1第一节单元系相变的热力学及相平衡一、相平衡条件和相律相变:由一种相转变为其他的相。1、相平衡条件相平衡:物质系统中各相的自由能相等,且能稳定存在。自由度:可以独立变化,而不改变平衡系统中相的数目、种类的因素。第六章单组元相图及纯晶体的凝固第六章单组元相图及纯晶体的凝固2可以证明,处于平衡状态下的多相(α、β、γ、•••,P个相)体系,每个组元(1、2、•••,C个组元)在各相中的化学势都必须彼此相等,即:p1111p2222pcccc受热力学平衡条件限制,系统的自由度数目(f)与系统的组元数目(C)、相数目(P)和外界影响因素数目(n)之间存在一种相互制约的关系,称为相律,即:f=c–p+n对固体材料,相律可写为:f=c–p+2(仅考虑温度、压力的影响)或f=c–p+1(仅考虑温度的影响)第六章单组元相图及纯晶体的凝固3二、单元系相图单元系:单一组元组成的体系。多元系:多个组元组成的体系。相图:描述一个物质体系在不同平衡条件下存在相的种类、成分及其相对数量的几何图。第六章单组元相图及纯晶体的凝固相图作用:利用相图可以判断一个物质体系在不同条件下所存在相的种类、相的成分及其相对数量,判断随条件变化所发生的相变。41、H2O相图单相区:f=1-1+2=2,即温度、压力变化不会引起相变。两相区:f=1-2+2=1,即为维持两相平衡,温度和压力中只有一个可独立变化,另一个必须随之作相应变化才不会引起相变。三相区:f=1-3+2=0,即为维持三相平衡,温度和压力都必须保持恒定。当压力恒定时,单元系相图仅有温度变化轴。在单相区,f=1,在两相区,f=0。第六章单组元相图及纯晶体的凝固52、Fe相图对于Fe而言,在固态时可以发生同素异构转变,形成不同的固体相。单相区:f=1-1+2=2,即温度、压力变化不会引起相变。三相区:f=1-3+2=0,即为维持三相平衡,温度和压力都必须保持恒定。两相区:f=1-2+2=1,即为维持两相平衡,温度和压力中只有一个可独立变化,另一个必须随之作相应变化才不会引起相变。第六章单组元相图及纯晶体的凝固6第2节纯晶体的凝固物质由液态转变为固态的过程称为凝固。若凝固所形成的固体为晶体,则凝固过程可以称为结晶。一、液态结构(1)大多数金属熔化时体积变化不大,表明原子间距变化不大。液态原子平均距离略大于固态。(2)对密排结构的晶体,其液态原子配位数减小;对非密排结构的晶体,其液态原子配位数增大。(3)液态原子长程无序,但存在短程有序结构。局部的有序结构随原子热运动不断形成和消失,称“结构起伏”。(4)金属的熔化热远小于气化热≈升华热,判断液态金属仍为金属键结合。第六章单组元相图及纯晶体的凝固7二、晶体凝固的热力学条件恒压时,dG/dT=-S,因SL>SS,故有:(dG/dT)L<(dG/dT)s曲线GL-T与Gs-T必相交,交点对应温度为金属的熔点(凝固点)。已知:△G=△H-T△S,△H=Lm,△S=Lm/Tm故:△G=-Lm△T/Tm。可见,存在△T(=T-Tm)为结晶必要条件,△T越大,结晶驱动力越大。△T(结晶过冷度):实际结晶温度与理论结晶温度之差。第六章单组元相图及纯晶体的凝固T<Tm,固相稳定存在;T>Tm,液相稳定存在;T=Tm,固、液两相共存。所以,△G是结晶的驱动力。液相、固相自由能-温度曲线△G△TTTmGT℃8三、结晶过程中的形核结晶分为形核和长大两个过程。结晶通过不断的形成固相晶核和晶核长大而进行,直至液态金属完全转变为固态金属。液相中存在时聚时散的短程有序原子集团(结构起伏),称晶胚。晶胚内原子呈晶态排列,外层原子与液体中不规则排列原子相接触构成界面。晶胚在一定条件下可发展成晶核。第六章单组元相图及纯晶体的凝固能够长大的晶胚称晶核。晶核的形成方式分为均匀形核和非均匀形核。91、均匀形核晶核直接由液相中原子按固相原子排列方式排列的晶胚在液相中发展形成。晶核第六章单组元相图及纯晶体的凝固10(1)形核时的能量变化和临界晶核晶胚发展为能长大的晶核需要一定能量条件。设晶核形成时自由能变化为△G,晶核半径为r,晶核单位体积能变化为△Gv,晶核表面积为A,比表面能为σ,则:23434rrGAVGGVV均0243342rrGdrdGV均VGr2*均令得mmVTTLG代入得TLTrmm2*均(临界晶核半径)形核时自由能出现极大值。(由热力学推得)第六章单组元相图及纯晶体的凝固11当晶核半径r<r均*,其长大使ΔG增加,晶核熔化。当晶核半径r=r均*,熔化长大都有可能。当晶核半径r>r均*,长大使ΔG减小,晶核长大。第六章单组元相图及纯晶体的凝固223*)(316TLTGmm均得临界形核功临界形核功为形核时所需能量。可见,ΔT越大,则r均*和ΔG均*越小,形核越易。23434rrGGV均将代入TLTrmm2*均定义半径为r均*的晶核为临界晶核。1222222222**)(16)(16)(164TLTTLTGrAmmmmV设生成的临界晶核表面积为A*,则即临界形核所产生的表面能的2/3由形核时液相、固相体积能之差所抵消,另外1/3表面能则需靠液体中的能量起伏来抵消。结构起伏和能量起伏是形核的必要因素。223*)(316TLTGmm均与临界形核功比较,可见**31AG均第六章单组元相图及纯晶体的凝固13ΔT→N→(2)形核率(N)单位时间、单位体积液相中形成晶核的数目。形核率受两个矛盾的因素控制:①受ΔG*控制。形成的晶核数目:N1∝exp(-ΔG*/kT)②受原子扩散能力控制。具有扩散能力的原子几率:N2∝exp(-Q/kT)Q:原子越过固/液界面的扩散激活能总形核率N=N1N2=Kexp(-ΔG*/kT)exp(-Q/kT)N1N2N形核率随过冷度增大而增大,超过极大值后,形核率又随过冷度进一步增大而减小。第六章单组元相图及纯晶体的凝固14均匀形核ΔT→有效过冷度(0.2Tm)TmN→均匀形核时,对于易流动液体,存在有效过冷度ΔT*,此时N急剧增大,使结晶形核迅速结束。导致N-ΔT通常只有上升部分,而无下降部分。对于高粘度液体,均匀形核率很小,常常不存在有效过冷度。ΔT*第六章单组元相图及纯晶体的凝固152、非均匀形核晶核由液相原子附着在液相中已有的固相表面形成。固体实验证明,纯金属均匀形核时最大过冷度可达≈0.2Tm,约为150~250℃。非均匀形核的过冷度一般只有几十度。第六章单组元相图及纯晶体的凝固晶核均匀形核ΔT→非均匀形核0.02Tm有效过冷度(0.2Tm)TmN→16界面张力在晶核与基体交界处,存在平衡关系:θ基底W晶核α液相LσαLσαwσLw设晶核体积为Vα,晶核与液相和基底接触面积分别为Aαw和AαL。第六章单组元相图及纯晶体的凝固cosθσσσLαwαLw)3θcos3cosθ2(πrV33α22αwsinπrA)cos-(1πrA2αw217将r非*代入ΔG非,得非均匀形核临界形核功:4cos3cos2G4cos3cos2Gv316G3323均非)(可见,ΔG非*与ΔG均*只相差一个角函数因子。令d(ΔG)/dr=0,得非均匀形核的临界半径为:因此,非均匀形核时自由能变化为:第六章单组元相图及纯晶体的凝固))(434()(234cos3cos2GG3VLVL非23Gv316G)(均18△G非*的大小取决于θ角。通常,0<θ<π,则(2-3cosθ+cos3θ)/4<1,即,△G非*<△G均*若θ=0,cosθ=1,△G非*=0,表明基底就是结晶核心,此时不需形核功。不同的润湿角第六章单组元相图及纯晶体的凝固若θ=π,cosθ=-1,△G非*=△G均*,表明基底不能促进形核。结论:基底与结晶晶体结构越相似,越易促进非均匀形核。19四、晶体长大液相中液-固界面位置存在原子相互迁移,即凝固和熔化,当液相向固体的原子迁移量比固体向液体的原子迁移量大时,晶粒才会长大。晶体长大过程中,固-液界面力图保持能量最低。第六章单组元相图及纯晶体的凝固201、固-液界面微观结构(Jackson模型)设固体表面可被原子占据的位置数为NT,已被固相原子占据的位置数为Na,则固相原子占据的位置分数为x=Na/NT。式中,α=ξLm/(kTm),称jackson因子。其中,ξ为晶体表面原子面配位数η与晶体体配位数ν之比,ξ恒小于1,称为结晶取向因子;Lm为熔化热;k为波尔兹曼常数;Tm为熔点。第六章单组元相图及纯晶体的凝固在界面生长过程中界面能的变化ΔGs与x的关系可表示为:ΔGs/(NTkTm)=αx(1-x)+xlnx+(1-x)ln(1-x)21不同物质具有不同的α值,对于不同的α值,界面生长过程中,△Gs-x关系曲线具有下列不同的形状。(1)对于α≤2的曲线,仅在x=0.5处有极小值。表明界面具有最大粗糙度时,△Gs最低。大多数金属和一些化合物为这类固-液界面,称粗糙界面。(2)对于α>2的曲线,在x=0.5附近有极大值,在x接近0和1处有极小值。部分无机非金属和高分子材料为这类固-液界面,其α≥5,称光滑界面。第六章单组元相图及纯晶体的凝固固相晶面上原子所占位置分数x22凝固时的固-液界面微观和宏观形态粗糙界面中原子的堆放第六章单组元相图及纯晶体的凝固微观宏观粗糙界面:界面微观粗糙,而宏观平直。液固固液光滑界面:微观为由许多光滑的小平面组成,而宏观不平。光滑界面中原子的堆放微观宏观固固液液23特点:★不需孕育期和形核功;★连续垂直生长;★固-液界面生长所需动态过冷度△Tk(结晶时,固-液界面处温度与理论结晶温度之差)很小(约10-4℃);★生长速率很大:vg=μ1△Tk2、晶体长大方式和生长速率长大方式即固-液界面向液相中的推移方式。(1)连续长大(粗糙界面的垂直生长)第六章单组元相图及纯晶体的凝固24(2)二维晶核台阶生长(光滑界面的横向生长)生长特点:★需要不断地形成新的二维晶核,需形核功,生长不连续;★晶体生长需要较大动态过冷度△Tk(1~2℃);★生长速率:vg=μ2exp(-b/△Tk)式中,μ2、b为常数二维晶核形核第六章单组元相图及纯晶体的凝固25螺位错提供永不消失的小台阶,长大速度较慢生长特点:★不需在固-液界面上反复形核,不需形核功,生长连续;★生长速率为:vg=μ3△Tk2(μ3为常数)(3)螺位错生长机制(光滑界面的横向生长)第六章单组元相图及纯晶体的凝固26五、结晶动力学及凝固组织1、结晶动力学可证明,已结晶体积分数φr与形核率N和长大率vg的关系为:φr=1-exp(-πNvg3t4/3)—(约翰逊-梅尔方程)曲线表明:(1)结晶体积分数与时间成“S”形。(2)长大率对结晶体积分数的影响大于形核率。考虑N与时间呈指数关系,有阿弗拉密方程:φr=1-exp(-ktn)式中,k为常数,n为与相变机制相关的阿弗拉密指数。第六章单组元相图及纯晶体的凝固272、晶体生长形态(1)正温度梯度下的生长形态—平面状生长粗糙界面和光滑界面皆以平面状方式向液相中推移。第六章单组元相图及纯晶体的凝固距离固相固相固相液相Tm固-液界面GLGS过冷区固-液界面凸起温度固相28固相固-液界面凸起(2)负温度梯度下的生长形态—树枝状生长固-液界面以树枝状方式向液相中推移。对粗糙界面,该效应显著,对光滑界面往往不很明显。第六章单组元相图及纯晶体的凝固距离固相液相固-液界面GLGS过冷区Tm温度固相固相固相293、凝固后的晶粒大小控制(1)增加过冷度可以证明,晶粒直径d与时间t内形成的晶核数P成反比,且与形核率N和长大率vg有如下关系:1/d∝P=k(N/vg)3/4而N∝exp(-1/△T2),连续长大时v