第一章(第1课时)1.1具有意义相反的量教学目标:1体会数学中引入正负数来表示具有意义相反的量的必要性和合理性,能运用正数和负数表示生活中具有相反意义的量;2理解有理数的意义,体会有理数应用的广泛性。教学过程一激情引趣,导入新课猜猜看:12007年1月27日,中央电视台新闻联播后关于城市天气预报,播音员说:北京,晴,零下3度到5度,你猜,屏幕上显示的是什么?2世界上最高峰---珠穆朗玛峰高出海平面8844.43米,吐鲁番盆地低于海平面155米,你猜中国地图册上这两个地方标出的数字分别是什么?3我这儿有一张存折,你猜银行是怎么区分存款和取款的?(投影存折)二合作交流,探究新知1讨论上面提出的问题2意义相反的量(1)上面四个问题中,零上与零下、高出于低于、存款与取款都是意义相反的量,在生活中你还见过意义相反的量吗?(2)温馨提示:意义相反的量,有两点值得注意,一是有两个量,所谓量,就得带上单位二是意义相反。如:向东走10米,和运进20吨就不是意义相反的量。考考你:在下列横线上填上适当的文字,使其前后构成意义相反的量。(1)收入1000元,______200元,(2)上升20米,______25米;3正数和负数(1)怎样用数来表示意义相反的量?一对意义相反的量,一个用正数表示,另一个用负数表示。温馨提示:①小学学过的除0外的自然数和分数都是正数数。②负数就是正数前面加上-,有时候为了强调正数,也在正数前面加上+,如银行表示存款。但一般是省略了的。(3)零是负数吗?零有什么作用?4正数和负数,零和负数大小的比较想一想:1某地2月18日凌晨一点的温度是0°C凌晨4点的温度是-2°C,哪个时刻温度低?2珠穆朗玛峰海平面高度为8844.43米,吐鲁番盆地海平面高度为-155米,海平面高度为0米,哪个地方低?你能否从这两个例子受到启发,比较正数和零,负数和零,正数和负数的大小。正数____0,负数____0正数_____负数5有理数的概念(1)小学你学过哪些数?现在你又学到了什么数?(2)对我们已经学过的数怎样分类?①按整分性分正整数、零、负整数统称为____,正分数、负分数统称为____,整数和分数统称为______②按正负性分正有理数包括______和______,负有理数包括______和_______.请填写下表:__正整数整数————有理数正分数数——__________正整数正有理数———有理数负整数———温馨提示:(1)正数和零称为_____,(2)负数和零称为______,(3)如果把整数看作分母是1的分数,这时分数就包含了整数,如果没有特别的说明,分数是指分母不等于1的分数。(4)所有的整数集合在一起,组成了整数集,所有的有理数集合在一起就组成了有理数集。三应用迁移,拓展提高。1相反意义的量例1判断下列各题是否是相反意义的量,(1)上升和下降(2)运进货物100吨和下降100米,(3)向东走10米与向西走1米2表示相反意义的量例2(1)收入10万元,记作:+10万元,支出1000元记作______.(2)水位升高1.2米,记作+1.2米,那么-3.0米表示_________.3有理数的概念例3下列说法正确的是()A正数、零、负数统称为有理数。B分数、整数统称为有理数。C正有理数、负有理数统称为有理数。D以上都不对例4已知:1,、、0,-37、0.2,,-0.01,-20%,,,其中整数有___________________,负分数有__________________.4实践应用例5北京与巴黎两地时差是-7(带正号的数表示同一时刻比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是_________四课堂练习,巩固提高P6练习题1,2五知识小结,巩固升华1什么样的量才是意义相反的量?2意义相反的量怎样表示?3什么叫有理数?有理数怎样分类?作业:P6-7