【巩固练习】一.选择题1.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形面积的()A.B.C.D.2.顺次连结任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形3.已知平行四边形的一条边长为10cm.其两条对角线长可能是()A.6cm,12cmB.8cm,10cmC.10cm,12cmD.8cm,12cm4.如图,在矩形ABCD中,点P是BC边上的动点,点R是CD边上的定点。点E、F分别是AP,PR的中点。当点P在BC上从B向C移动时,下列结论成立的是()A.线段EF的长逐渐变大;B.线段EF的长逐渐减小;C.线段EF的长不改变;D.线段EF的长不能确定.5.(2015春•嵊州市校级期中)如图,△ABC的周长为26,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长是()A.1.5B.2C.3D.46.如图,矩形ABCD的周长是20cm,以AB、CD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和682cm,那么矩形ABCD的面积是)2A.212cmB.162cmC.242cmD.92cm7.正方形内有一点A,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是()A.10B.20C.24D.258.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°二.填空题9.如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是________.10.在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.11.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2……依此类推,则平行边形nnABCO的面积为___________.312.如图所示,在口ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=13AC;③DN=2NF;④12AMBABCSS△△.其中正确的结论是________.(只填序号)13.已知菱形的两条对角线长分别是6cm,8cm.则菱形的周长是_____cm,面积是_____cm2.14.(2015春•启东市期中)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.15.如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的F处,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.16.(2015•潮南区一模)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…Sn(n为正整数),那么第8个正方形面积S8=__________.4三.解答题17.如图所示,在四边形ABCD中,∠ABC=90°.CD⊥AD,2222ADCDAB.(1)求证:AB=BC.(2)当BE⊥AD于E时,试证明BE=AE+CD.18.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=___________.19.探究问题:(1)方法感悟:如图,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∠1+∠3=45°.即∠GAF=∠________.又AG=AE,AF=AF5∴△GAF≌△________.∴_________=EF,故DE+BF=EF.(2)方法迁移:如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.20.(2015•海淀区二模)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.【答案与解析】一.选择题1.【答案】B;【解析】由题意先证明△AOE≌△COF,∴S阴影=S△COD=S矩形ABCD.2.【答案】A;3.【答案】C;【解析】由三角形两边之和大于第三边判定.4.【答案】C;【解析】由三角形中位线定理,EF长度为AR的一半.5.【答案】C;【解析】解:∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6,6∴PQ=DE=3.故选:C.6.【答案】B;【解析】设两个正方形的边长分别为xy,,根据题意得:106822yxyx,则222100,xyxy,解得16xy.7.【答案】B;【解析】1+2+3+4=周长的一半.8.【答案】B;【解析】证△ECF为等腰直角三角形.二.填空题9.【答案】7516;【解析】由折叠的特性可知∠DBC′=∠DBC,由AD∥BC得∠ADB=∠DBC,因此∠DBC′=∠ADB,故BE=DE.可设AE=x,则BE=4-x,在Rt△ABE中,由勾股定理可得222ABAEBE,即22234xx,解得x=87,BE=825.因此阴影部分的面积为1675382521.10.【答案】13;【解析】连接CE,因为A,C关于BD对称,所以CE为所求最小值13.11.【答案】n25;【解析】每一次变化,面积都变为原来的12.12.【答案】①②③;【解析】易证四边形BEDF是平行四边形,△ABM≌△CDN.∴①正确.由BEDF可得∠BED=∠BFD,∴∠AEM=∠NFC.又∵AD∥BC.∴∠EAM=∠NCF,又AE=CF∴△AME≌△CNF,∴AM=CN.由FN∥BM,FC=BF,得CN=MN,∴CN=MN=AM,AM=13AC.∴②正确.∵AM=13AC,∴13AMBABCSS△△,∴④不正确.FN为△BMC的中位线,BM=2NF,△ABM≌△CDN,则BM=DN,∴DN=2NF,∴③正确.13.【答案】20;24;14.【答案】3;【解析】解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,7∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.15.【答案】7;【解析】∵四边形ABCD是平行四边形,∴AD=BC,AB=CD.又∵以BE为折痕,将△ABE向上翻折到△FBE的位置,∴AE=EF,AB=BF.已知DE+DF+EF=8,即AD+DF=8,AD+DC-FC=8.∴BC+AB-FC=8.①又∵BF+BC+FC=22,即AB+BC+FC=22.②,两式联立可得FC=7.16.【答案】128;【解析】根据题意可得:第n个正方形的边长是第(n﹣1)个的倍;故面积是第(n﹣1)个的2倍,已知第一个面积为1;则那么第8个正方形面积S8=27=128.故答案为128.三.解答题17.【解析】(1)证明:连接AC∵∠ABC=90°,∴222ABBCAC.∴CD⊥AD,∴222ADCDAC.∵2222ADCDAB,∴2222ABBCAB.∴AB=BC.(2)证明:过C作CF⊥BE于F.8∵BE⊥AD,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴△BAE≌△CBF.∴AE=BF.∴BE=BF+EF=AE+CD.18.【解析】解:(1)证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE,∵DF∥AC,∴∠FDB=∠C又∵AB=AC,∴∠B=∠C,∴∠FDB=∠C∴DF=BF∴DE+DF=AB=AC;(2)图②中:AC+DE=DF.图③中:AC+DF=DE.(3)当如图①的情况,DF=AC-DE=6-4=2;当如图②的情况,DF=AC+DE=6+4=10.故答案是:2或10.19.解:(1)EAF、△EAF、GF.(2)DE+BF=EF,理由如下:假设∠BAD的度数为m,将△ADE绕点A顺时针旋转m°得到△ABG,如图,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵12EAFm°,∴112322BADEAFmmm°°°.∵∠1=∠2,∴∠1+∠3=12m°.即∠GAF=∠EAF.9又AG=AE,AF=AF.∴△GAF≌△EAF.∴GF=EF.又∵GF=BG+BF=DE+BF,∴DE+BF=EF.20.【解析】解:(1)∵在△ABC中,AB=AC,∠ABC=α,∴∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=2α,∵AE=AD,∴∠ADE=90°﹣α;(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α,由(1)知,∠ADE=90°﹣α,∴∠ADC=∠ADE+∠EDC=90°,∴AD⊥BC.∵AB=AC,∴BD=CD;②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α,由(1)知,∠DAE=2α,∴∠DAC=α,∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.