最新人教版八年级下册数学解题技巧专题:特殊平行四边形中的解题方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

最新八年级下册数学精品教学资料设计最新八年级下册数学精品教学资料设计1解题技巧专题:特殊平行四边形中的解题方法◆类型一特殊四边形中求最值、定值问题一、利用对称性求最值【方法10】1.(2017·青山区期中)如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为________.第1题图第2题图2.(2017·安顺中考)如图,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________.二、利用面积法求定值3.如图,在矩形ABCD中,点P是线段BC上一动点,且PE⊥AC,PF⊥BD,AB=6,BC=8,则PE+PF的值为________.【变式题】矩形两条垂线段之和→菱形两条垂线段之和→正方形两条垂线段之和(1)(2017·眉山期末)如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于________.变式题(1)图变式题(2)图(2)如图,正方形ABCD的边长为1,E为对角线BD上一点且BE=BC,点P为线段CE上一动点,且PM⊥BE于M,PN⊥BC于N,则PM+PN的值为________.◆类型二正方形中利用旋转性解题4.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是__________.5.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF=S△ABE+S△ADF.最新八年级下册数学精品教学资料设计最新八年级下册数学精品教学资料设计26.如图,在正方形ABCD中,对角线AC,BD交于点O,P为正方形ABCD外一点,且BP⊥CP,连接OP.求证:BP+CP=2OP.参考答案与解析1.245解析:如图,过点Q作QE⊥AC交AB于点E,则PQ=PE.∴DP+PQ=DP+PE.当点D,P,E三点共线的时候DP+PQ=DP+PE=DE最小,且DE即为所求.当DE⊥AB时,DE最新八年级下册数学精品教学资料设计最新八年级下册数学精品教学资料设计3最小.∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=4,OB=12BD=3,∴AB=5.∵S菱形ABCD=12AC·BD=AB·DE,∴12×8×6=5·DE,∴DE=245.∴DP+PQ的最小值为245.2.6解析:如图,设BE与AC交于点P,连接BD.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE,即P为AC与BE的交点时,PD+PE最小,为BE的长度.∵正方形ABCD的边长为6,∴AB=6.又∵△ABE是等边三角形,∴BE=AB=6.故所求最小值为6.故答案为6.3.245解析:∵四边形ABCD为矩形,∴∠ABC=90°.∵AB=6,BC=8,∴AC=10,∴OB=OC=12AC=5.如图,连接OP,∵S△OBP+S△OCP=S△OBC,∴OB·PF2+OC·PE2=S△OBC,∴5·PF2+5·PE2=S△OBC.∵S△OBC=14S矩形ABCD=14AB·BC=14×6×8=12,∴5·PF2+5·PE2=12,∴PE+PF=245.【变式题】(1)52解析:∵菱形ABCD的周长为40,面积为25,∴AB=AD=10,S△ABD=252.连接AP,则S△ABD=S△ABP+S△ADP,∴12×10(PE+PF)=252,∴PE+PF=52.(2)22解析:连接BP,过点E作EH⊥BC于H.∵S△BPE+S△BPC=S△BEC,∴BE·PM2+BC·PN2=BC·EH2.又∵BE=BC,∴PM2+PN2=EH2,即PM+PN=EH.∵△BEH为等腰直角三角形,且BE=BC=1,∴EH=22,∴PM+PN=EH=22.4.325.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合,∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=最新八年级下册数学精品教学资料设计最新八年级下册数学精品教学资料设计4∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF=S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.6.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功