实数的有关概念和性质以及实数的运算

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实数的概念实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。实数集通常用黑正体字母R表示。而表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。实数的运算法则1、加法法则:(1)同号两数相加,取相同的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用①加法交换律:两个数相加,交换加数的位置,和不变.即:②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变.即:2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)3、乘法法则:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用①乘法交换律:两个数相乘,交换因数的位置,积不变.即:.②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即:。③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:.4、除法法则:(1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。即(3)0除以任何数都等于0,0不能做被除数。5、乘方:所表示的意义是n个a相乘,即正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.乘方与开方互为逆运算。6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。实数计算的常见类型及方法一、实数的运算(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。(2)减法a-b=a+(-b)(3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即(4)除法(5)乘方(6)开方如果x2=a且x≥0,那么=x;如果x3=a,那么在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律(1)加法交换律a+b=b+a(2)加法结合律(a+b)+c=a+(b+c)(3)乘法交换律ab=ba.(4)乘法结合律(ab)c=a(bc)(5)分配律a(b+c)=ab+ac其中a、b、c表示任意实数.运用运算律有时可使运算简便.一、加法运算中的方法与技巧例1计算:分析:(1)题的关键是确定运算顺序,有括号的还应先计算括号内的;(2)题的关键是求出绝对值符号中式子的值,进而求出整个式子的值.进行有理数的混合计算时,小学学过的确定运算顺序的方法仍然适用【小结】巧用加法的交换律与结合律,以达到简化的目的,同时注意交换加数位置时,一定要连同前面的符号一起移动.实数加法运算中通常有以下规律:互为相反数的两个数先相加—“相反数结合法”;符号相同的数先相加—“同号结合法”;分母相同的数先相加—“同分母结合法”;几个数相加得到整数先相加—“凑整法”;整数与整数,小数与小数相加—“同形结合法”.二、乘、除运算中的方法与技巧例2:计算:分析:(1)这里没有用括号规定运算顺序,所以我们应先算乘方,再算除法,最后算除法.(2)用括号规定运算顺序,所以应先算括号内的,再按顺序进行.另外也可以利用乘法对加法的分配律去掉括号,然后再按顺序进行.点评:在进行有理数的混合运算时,一要注意运算顺序的正确;二要注意符号的变化;三要注意在运算性质时不要出现错误.三、幂的运算【例3】计算:【小结】表示4个-2相乘,负数的偶次方是正数,而表示的相反数,结果为负数,两者意义不同,注意区别.同理,表示3个-2相乘,表示的相反数,表示3个相乘,表示除以5的商的相反数,两者意义不同,注意观察,当底数是分数时,底数要加括号.四、在混合运算中灵活运用运算律【小结】此题利用分配律计算非常简便,但同时是同学们在计算时容易出错的地方.第一种方法是把括号中的式子看作和的形式,分别相乘,再相加.第二种方法是先定符号,后面注意整体思想.第三种方法,第一部分相乘时先定符号,后定值.【小结】善于观察,寻求解决问题的策略,是至关重要的.灵活使用交换律和分配律,使解决本题的步骤变得简捷明快.【小结】有理数的加减乘除混合运算中,如果有括号通常先算括号里面的,如果无括号,则按照“先乘除,后加减”的顺序进行.此题,在将混合运算中的除法转化为乘法后,运用乘法运算律简化计算.同时注意多项式除以单项式可用分配律.单项式除以多项式不可用分配律,必须把除数作为一个整体来进行计算.五、二次根式的运算例8:小东在学习了后,认为也成立,因此他认为一个化简过程:是正确的.你认为他的化简对吗?说说你的理由。分析:二次根式的化简要根据其基本性质进行,对于性质:,是有条件的即:,做题时应注意这一点。解答:他的化简过程是错误的,这是因为:根据性质:,应有条件,而该同学在的化简过程中,显然出现了违背条件的情况,与是没有意义的,因此他的化简过程是错误的。正确的应是:点评:运算性质是运算的基础,要准确全面的把握运算性质,不能断章取义,在复习是要注这一点,对某一知识的掌握要全面、深刻而不能仅仅局限于了解、知道或模棱两可,这是总复习中的大忌。拓广:对于题目“化简并求值:,其中,甲、乙人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?解:乙的解答是错误的,因为:,则,故有:六、开放性问题【例9】现有四个有理数3,4,-6,10运用有理数的四则混合运算写出三种不同方法的运算式,使其结果等于24,运算如下:(1)________________________(2)________________________(3)________________________解:(1)10-[(-6)×3+4](2)(10+4-6)×3(3)4-[10×(-6)]÷3【小结】此题具有开放性、探究性,要发散思维,结合有理数的混合运算性质,多角度寻求解题途径对于任意非零实数x,y定义的新运算“⊗”:x⊗y=ax-by,等号右边是乘法和减法的运算,已知:2⊗3=2,3⊗5=2,则3⊗4=_____.答案:4解析:根据题意列出方程组,求出方程组的解得到a与b的值,再将所求式子利用新定义变形后计算即可求出值.解:根据题意得:,①×3-②×2得:b=2,将b=2代入①得:2a-6=2,即a=4,则3⊗4=12-8=4.故答案为:4在实数的原有运算法则(“?”和“-”仍为通常的乘法和减法)中,我们补充定义新运算“”如下:当时,;当时,.则当时,函数的最大值等于()A.-1B.1C.6D.12答案:C小明设计了一个关于实数的运算程序如下,当输入x的值为时,则输出的数值为_____.在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=b2;当a<b时,a⊕b=a.则当x=2时,(1⊕x)•x-(3⊕x)的值为_____.(“•”和“-”仍为实数运算中的乘号和减号)

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功