ARIMA模型-自回归移动平均模型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

自回归移动平均模型(AutoregressiveIntegratedMovingAverageModel,简记ARIMA)目录[显示]1什么是ARIMA模型?2ARIMA模型的基本思想3ARIMA模型预测的基本程序4相关链接o4.1各国的box-jenkins模型名称5ARlMA模型案例分析o5.1案例一:ARlMA模型在海关税收预测中的应用o5.2案例二:基于ARIMA模型的备件消耗预测方法[1]6参考文献[编辑]什么是ARIMA模型?ARIMA模型全称为自回归移动平均模型(AutoregressiveIntegratedMovingAverageModel,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。[编辑]ARIMA模型的基本思想ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。[编辑]ARIMA模型预测的基本程序(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。(二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。(三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。(四)进行参数估计,检验是否具有统计意义。(五)进行假设检验,诊断残差序列是否为白噪声。(六)利用已通过检验的模型进行预测分析。[编辑]相关链接[编辑]各国的box-jenkins模型名称GlossaryofstatisticaltermsLanguageDescriptionEnglishBox-JenkinsmodelFrenchmodèledeBox-JenkinsGermanBox-Jenkins-ModellDutchBox-Jenkins-modelItalianmodelloBox-JenkinsSpanishmodelodeBox-JenkinsCatalanmodeldeBox-JenkinsRomanianmodelulBox-JenkinsFinnishBoxin-JenkinsinmallitHungarianBox-Jenkins-modellTurkishBox-JenkinsmodeliEstonianBox-JenkinsimudelLithuanianBoxirJenkinsmodelis;BoksoirDženkinsomodelisSlovenianBox-JenkinsovamodelPolishmodelBoxa-JenkinsaRussianМодельБокса-ДженкинсаUkrainianмодельБокса-ДженкінсаFarsimodeleBox-JenkinsPersian-Farsiلدمسکاب-زنيکنجArabicذومنجسكوب-زكنجAfrikaansBox-Jenkins-modelChinese博克斯―詹金斯模型[编辑]ARlMA模型案例分析[编辑]案例一:ARlMA模型在海关税收预测中的应用2008年。海关税收预算计划8400亿元.比2007年实际完成数增加10.8%,比2007年预算数增加22.1%。为了对2008年江门海关税收总体形势进行把握,笔者尝试利用SAS统计分析软件的时间序列预测模块建立ARIMA模型,对2008年江门海关税收总值进行预测。从预测结果来看,预测模型拟合度较高,预测值也切合实际情况,预测模型具有一定的应用价值。现将预测的方法、原理以及影响税收工作的相关因素分析。一、ARlMA模型原理ARIMA模型全称为自回归移动平均模型(AutoregressiveIntegratedMovingAverageModel,简记ARIMA)。是由博克思(Box)fFfl詹金斯(Jenkins)于70年代初提出的一著名时问序列预测方法,所以又称为box--jenkins模型、博克思一詹金斯法。其中ARIMA(p,d.q)称为差分自回归移动平均模型,AR是自回归,P为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。ARIMA模型可分为3种:(1)自回归模型(简称AR模型);(2)滑动平均模型(简称MA模型);(3)自回归滑动平均混合模型(简称ARIMA模型)。ARIMA模型的基本思想是:将预测对象随时问推移而形成的数据序列视为—个随机序列.以时间序列的自相关分析为基础.用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。ARlMA模型在经济预测过程中既考虑了经济现象在时间序列上的依存性,又考虑了随机波动的干扰性,对于经济运行短期趋势的预测准确率较高,是近年应用比较广泛的方法之一。二、应用ARIMA模型进行预测每月税收数据.可以看作是随着时间的推移而形成的一个随机时间序列,通过对该时间序列上税款值的随机性、平稳性以及季节性等因素的分析,将这些单月税收值之间所具有的相关性或依存关系用数学模型描述出来,从而达到利用过去及现在的税收值信息来预测未来税收情况的目的。(一)对序列取对数和作差分处理,形成稳定随机序列ARIMA模型建模的基本条件是要求待预测的数列满足平稳的条件,即个体值要围绕序列均值上下波动,不能有明显的上升或下降趋势,如果出现上升或下降趋势,需要对原始序列进行差分平稳化处理。从上图可看出,江门海关自2002年以来的实际入库税收值数列波动性较明显,且呈现出一定的上升趋势,不能直接用AHIMA模型进行建模。取对数可以消除数据波动变大趋势,对数列进行一阶差分,可以消除数据增长趋势性和季节性。从下图可以看出,预测数列取对数并作一阶差分后的图形显示基本消除了长期趋势性的影响,趋于平稳化,满足ARIMA模型建模的基本要求。(二)模型参数的估计时间序列预测模块的自相关分析包括对自相关系数和偏相关系数的分析,通过对比分析从而实现对时间序列特性的识别。从计算结果可知,自相关函数1步截尾,偏自相关函数2步截尾,白相关函数通过白噪声检验。根据变换数列的自相关函数和偏自相关函数的特点,并经过反复测试,对ARIMA模型的参数进行估计.三个参数定为d=l,p=2和q=l。对参数进行检验。从检验结果可知,参数估计全部通过显著性检验.拟合优度统计量表中给出了残差序列的方差(0.063367)和标准误差(0.251729),以及按AIC和SBC标准计算的统计量(9.496798)和(18.54752),这两个值都较小,表明对预测模型拟合得较好。从残差的自相关检验结果数据中.可以得知残差通过白噪声显著性检验。预测模型最终形式为:(14-0.98284B)(1+0.56103B-2)Z=(1-0.34111B)(1+B)u其中,Z=logX。B为后移算子,u为随机干扰项(三)应用模型预测。利用上面确定的模型进行预测。预测模型x.-J2007年税收的拟合值是21.75亿元,跟实际税收值22.58亿元比较,误差为3.7%,表明预测模型拟合度较高,预测模型具有一定的应用fir值。把预测模型向前推12个月进行预测,得到2008年各月税收数据,全年累计税收预计均值为23.5亿元,实际税收值会围绕此值上下波动。需要说明的是,由于利用模型向前预测1一12月的数据,预测时间越长,难度越大,预测精度也下降,若到年中再次预测时,预测精度将会进一步提高。这个税收预测值是基于当前海关监管水平、税收征管水平不变或提高的基础上,挖掘税收样本数据自身涵盖的信息.利用数理统计分析方法,建立预测模型得出的理论预测值,一旦实际外部环境和条件发生变化,例如国家实施宏观调控、人民币升值过快、汇率大幅变动、对外经济政策的变化等,将对税收预测结果生一定的影响。三、其他可能对2008年税收工作产生影响的主要因素(一)个别商品税收变化影响巨大2007年占关区税收总值80%前20位大类税源商品,与2006年占关区税收总值80%前20位大类税源商品相比,新增了大豆、印刷和装订机械及零件、棉纱线,少了空气调节器、初级形状的聚丙烯和初级形状的聚乙烯.新增的三项商品税收总值为3.1亿元。占关区税收总值13.8%,其中,大豆2007年税款高达2.6亿元,2006年仅为15万元,影响巨大。另外,煤和钢材的税收值大幅增长。液化石油气、纺织品(包括服装和纺织纱线)、纸及纸板(未切成形的)税收下降幅度较大。主要税源商品的不稳定,为关区税收工作增加了难度。(二)本地企业异地纳税仍保持较大规模据统计,2007年江门关区企业在异地进口异地报关应税货值85.2亿元人民币,比2006年增长13.6%,应征税收为9.2亿元,较2006年增长7.4%.占江门区同期应征税收总额的四成多。从口岸分布来看,大部分本地企业异地纳税进口行为分布在广州口岸。在广州口岸纳税4.7亿元,下降占异地纳税总值的51.1%。另外。在黄埔口岸纳税1.7亿元,下降4.8%;在拱北口岸纳税1.3亿元,增加3倍从商品来看,异地纳税进口的商品主要是废塑料、废五金、木浆、冰乙酸、正丁醇、脂肪醇、冻猪杂碎、IEl挖掘机、初级形状聚乙烯等商品,税款均超过千万元,部分商品曾经在本关区口岸大量进口。废塑料进口3亿元,下降10.9%;废五金进口1.2亿元,增长87.6%;木浆进口7783万元,增长17.2%;冰乙酸进口6593万元,下降19.4%;正丁醇进口3498万元,增长3.5倍;脂肪醇进口3366万元。32.3%;冻猪杂碎进口3313万元,增长2.3倍;旧挖掘机进口3101万元,下降1.7%;初级形状聚乙烯进口2539万元,下降54%。其中正丁醇、冻猪杂碎和废五金进口增长迅猛。(三)主要纳税大户变化较大2007年占关区税收总值60%前20位纳税企业,与2006年占关区税收总值60%前20位纳税企业相比,有12家企业新上榜,更新率为60%。新增的2家纳税企业嘉吉投资(中国)有限公司和北京华特安科经贸有限公司共纳税3.4亿元,占关区税收总值的15%。影响巨大。而海洋石油阳江实业有限公司的纳税额从2006年的1.4亿元下降到2783万元,该企业的税款下fl手x,l2007年关区税收工作带来了较大的影响。主要纳税大户的不稳定,加大了2008年关区税收工作的不确定性。(四)加工贸易内销补税和出口征税的影响2007年,江门关区一般贸易应征税收为21.5亿元,增长26.5%;加工贸易内销补税(不含后续补税)为7909万元,增长11.3%;后续补税为594万元,增长49.3%。2007年江门关区出口商品征税160万元,增长1.8倍。江门关区的税收以一般贸易进口征税为主,但由于加工贸易进出口值占关区进出口总值的比重超过一半.因而加强加工贸易内销征税工作,充分挖掘加贸内销补税潜力,可以为关区税收总量增长提供支持。虽然当前出口征税占关区税收总值的比重非常少,但由于国家不断调整外贸政策,2008年出口需要征收关税商品涉及300多个税号,而且相当多的商品出口关税率高达15—20%,预计江门关区出口关税将会保持大幅增长态势,为关区税收总量增长提供补充。综合来看

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功