人教版初中数学一次函数专项训练及答案一、选择题1.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x12B.12x32C.x32D.0x32【答案】B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得12m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.2.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【答案】B【解析】【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0m4),根据矩形的周长公式即可得出C矩形CDOE=8,此题得解.【详解】解:设点C的坐标为(m,-m+4)(0<m<4),则CE=m,CD=-m+4,∴C矩形CDOE=2(CE+CD)=8.故选B.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.3.下列关于一次函数0,0ykxbkb的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点0,bD.当bxk时,0y【答案】D【解析】【分析】由k0,0b可知图象经过第一、二、四象限;由k0,可得y随x的增大而减小;图象与y轴的交点为0,b;当bxk时,0y;【详解】∵0,0ykxbkb,∴图象经过第一、二、四象限,A正确;∵k0,∴y随x的增大而减小,B正确;令0x时,yb,∴图象与y轴的交点为0,b,∴C正确;令0y时,bxk,当bxk时,0y;D不正确;故选:D.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式ykxb中,k与b对函数图象的影响是解题的关键.4.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<4【答案】A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x-2,∴不等式kx+b>4的解集是x-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.5.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象.解题关键点:从图象获取信息,由行程问题基本关系列出算式.6.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是()A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D.乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.【详解】解:A.甲的速度为:60÷2=30,故A错误;B.根据图象即可得出甲比乙早出发0.5小时,故B错误;C.设1l对应的函数解析式为111ykxb,所以:1116020bkb,解得113060kb即1l对应的函数解析式为13060yx;设2l对应的函数解析式为222ykxb,所以:22220.503.560kbkb,解得222010kb即2l对应的函数解析式为22010yx,所以:30602010yxyx,解得1.418xy∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,故本选项符合题意;D.根据图形即可得出乙出发3h时到达A地,故D错误.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.7.已知直线y=2x-1与y=x-k的交点在第四象限,则k的取值范围是()A.12<k<1B.13<k<1C.k>12D.k>13【答案】A【解析】【分析】由直线y=2x-1与y=x-k可列方程组求交点坐标,再通过交点在第四象限可求k的取值范围.【详解】解:设交点坐标为(x,y)根据题意可得21yxyxk解得112xkyk∴交点坐标112k,k∵交点在第四象限,∴10120kk><∴112k<<故选:D.【点睛】本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.8.一次函数y=(m﹣2)xn﹣1+3是关于x的一次函数,则m,n的值为()A.m≠2,n=2B.m=2,n=2C.m≠2,n=1D.m=2,n=1【答案】A【解析】【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)xn-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.9.某一次函数的图象经过点1,2,且y随x的增大而减小,则这个函数的表达式可能是()A.24yxB.24yxC.31yx=+D.31yx【答案】B【解析】【分析】设一次函数关系式为ykxb,把(1,2)代入可得k+b=2,根据y随x的增大而减小可得k<0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为ykxb,∵图象经过点1,2,2kb;∵y随x增大而减小,∴k0,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31yx,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B.【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三、象限,y随x的增大而增大;当k<0时,图象经过二、四、象限,y随x的增大而减小;熟练掌握一次函数的性质是解题关键.10.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2C.﹣1D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km12km,解得:m11k2或m11k2(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.11.在平面直角坐标系中,函数2(0)ykxk的图象如图所示,则函数232ykxk的图象大致是()A.B.C.D.【答案】C【解析】【分析】根据函数图象易知k0,可得32k0,所以函数图象沿y轴向下平移可得.【详解】解:根据函数图象易知k0,∴32k0,故选:C.【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.12.如图,过点1(1,0)A作x轴的垂线,交直线2yx于点1B;点2A与点O关于直线11AB对称;过点2(2,0)A作x轴的垂线,交直线2yx于点2B;点3A与点O关于直线22AB对称;过点3A作x轴的垂线,交直线2yx于点3B;按3B此规律作下去,则点nB的坐标为()A.(2n,2n-1)B.(12n,2n)C.(2n+1,2n)D.(2n,12n)【答案】B【解析】【分析】先根据题意求出点A2的坐标,再根据点A2的坐标求出B2的坐标,以此类推总结规律便可求出点nB的坐标.【详解】∵1(1,0)A∴11OA∵过点1(1,0)A作x轴的垂线,交直线2yx于点1B∴11,2B∵2(2,0)A∴22OA∵过点2(2,0)A作x轴的垂线,交直线2yx于点2B∴12,4B∵点3A与点O关于直线22AB对称∴334,0,4,8AB以此类推便可求得点An的坐标为12,0n,点Bn的坐标为12,2nn故答案为:B.【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.13.若A(x1,y1)、B(x2,y2)是一次函数y=ax+x-2图像上的不同的两点,记1212mxxyy,则当m<0时,a的取值范围是()A.a<0B.a>0C.a<-1D.a>-1【答案】C【解析】【分析】【详解】∵A(x1,y1)、B(x2,y2)是一次函数2(1)2yaxxax图象上的不同的两点,12120mxxyy,∴该函数图象是y随x的增大而减小,∴a+10,解得a-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.14.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k3B.k3C.k0D.k0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原