湛江二中班别:组名:姓名:1ADBC第18章平行四边形18.1.1.1——平行四边形及性质(1)【学习目标】【教材p41页】1、掌握平行四边形的概念和对边相等对角相等的性质,根据概念和性质进行有关的计算和证明.2、让学生学会用分析法和综合法解决问题一、复习导入平行四边形的定义:的四边形叫做平行四边形。记作:,连AC和BD,则AC,BD叫平行四边形的二、合作探究1.平行四边形的性质1:边的性质:AB∥;BC∥AB=;BC=即:平行四边形对边平行且。2.平行四边形的性质2:角的性质:∠A=,∠B=即:平行四边形对角。3.小结:平行四边形的性质:用几何语言描述平行四边形的性质,①∵四边形ABCD是平行四边形∴AB∥,AD∥∴AB=,AD=②∵四边形ABCD是平行四边形∴∠A=∠,∠B=∠③∵四边形ABCD是平行四边形∴AB∥CD,∴∠A与∠D互为邻补角,∠A+∠D=,∠B+∠C=4.在ABCD中,已知∠B=40,求其他各个内角的度数。5.如图,在平行四边形ABCD中,CE⊥AB,AF⊥CD,垂足分别为E,F.求证:AF=CE.小结:如果两条直线平行,那么一条直线上所有的点另一条直线的距离都。6.如图,在ABCD中,∠B=60°AB=8,BC=10求ABCD中其余各个角的度数和它的周长。ODCBA湛江二中班别:组名:姓名:2DCBA【随堂检测】1、在ABCD中,AB=3㎝,AD=5㎝,∠A=43°,∠B=137°,则DC=,AD=∠C=,∠D=.其周长为。2、在▱ABCD中∠A:∠B=4:5,那么∠C=,∠D=_______.3、▱ABCD的周长为36㎝,相邻两条边长的比是1:2,那么这个平行四边形的这两条边长分别为_______㎝,_______㎝。4.在▱ABCD中,AB=4cm,BC=5cm,∠B=30o,则▱ABCD的面积为_______5.已知▱ABCD中,∠A比∠B小20°,则∠D的度数是()A.60°B.80°C.100°D.120°6、如图,在ABCD中,若40,40BACACB,求D和BCD的度数。7、如图,在平行四边形ABCD中,DF=BE,求证:AF=CE8.如图,已知ABCD,CEAB交AB于E,CFAD交AD的延长线于F,且130FCE,求DCB的度数。18.1.1.2——平行四边形的性质(2)CEBFDA湛江二中班别:组名:姓名:3OADBC【学习目标】【教材p44页】1.探索并掌握平行四边形的性质:平行四边形的对角线互相平分。2.会运用平行四边形的性质进行推理和计算。一、复习导入①的四边形叫做平行四边形。②平行四边形对边平行且;平行四边形对角。③两条平行线之间的任何两条平行线段都。二、合作探究1.平行四边形的性质3:对角线的性质已知:如图,▱ABCD中,对角线AC和BD相交于点O,求证:OA=OC,OB=OD。证明:∵▱ABCD是平行四边形∴∥;=;∴∠=∠,在△和△中,________________________________________∴△≌△∴即平行四边形的对角线互相平分。用几何语言∵四边形ABCD是平行四边形∴AO==12,BO==12,2、已知四边形ABCD是平行四边形,AB=5cm,BC=4cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.3、如图,在ABCD中,BC=10,AC=8,BD=14.△AOD的周长为多少?△ABC与△DBC的周长哪个长?长多少?DCBAODCBA湛江二中班别:组名:姓名:4OADBC【随堂检测】1、判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2、如图,已知AB=5㎝,AD=8㎝,AC=6㎝,BD=12㎝,则AO==㎝,BO==㎝,△AOB的周长是㎝3、平行四边形的对角线把平行四边形分成了对全等的三角形。4、在ABCD中,两条对角线AC、BD相交于点O,指出图形中所有相等的线段。5、在ABCD中,AC=6、BD=4,则AB的取值范围是________6.如图,在ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为20,AB=8,那么对角线AC与BD的和是多少?解:∵△AOB的周长为20(已知)∴++AB=20,∵AB=8∴AO+BO=∵在ABCD中,∴AO==12,,BO==12,(平行四边形对角线)∴AC+BD=2+2=2()=答:对角线AC和BD的和是。7.解答题:国王听说阿凡提非常聪明,召他进宫,说,我有一块平行四边形的花园(如上图),想在里面种四种不同的花,并且所占的面积一样,你给我设计几个方案.湛江二中班别:组名:姓名:518.1.2.1——平行四边形的判定(1)【学习目标】【教材p45-46页】1、明确平行四边形的判定方法。2、能运用平行四边形的判定,解决简单的实际问题。一、复习导入1、平行四边形的定义:两组对边分别的四边形叫做平行四边形。-------定义就是平行四边形的一种判定方法用几何语言表示:∵_________//____________________//____________∴四边形ABCD是____________2、平行四边形的性质:(1)边的性质:平行四边形的对边;几何语言:在中,ADBC,ABDC;(2)角的性质:平行四边形的对角;几何语言:在ABCD中,∠A=,∠B=;(3)对角线的性质:平行四边形的对角线;几何语言:在ABCD中,OA==12;OB==12;二、合作探究:已知:四边形ABCD,AB=CD,AD=BC求证:四边形ABCD是平行四边形证明:连结AC,在∴△ABC和△CDA中归纳:判定定理一:两组对边分别相等的四边形是平行四边形用几何语言表示:∵_________=____________________=____________∴四边形ABCD是____________2、类似地,我们还可以得出几个平行四边形的判定定理:判定定理二:两组对角分别相等的四边形是平行四边形用几何语言表示:∵∠_________=∠___________∠_________=∠____________∴四边形ABCD是____________判定定理三:对角线互相平分的四边形是平行四边形用几何语言表示:∵_________=____________________=____________∴四边形ABCD是____________湛江二中班别:组名:姓名:6【课堂检测】1.根据下列条件,不能判定一个四边形为平行四边形的是()(A)两组对边分别相等(B)两条对角线互相平分(C)两条对角线相等(D)两组对边分别平行2、四边形ABCD中,AB∥CD,当满足下列哪个条件时,四边形ABCD是平行四边形()(A)∠B+∠C=180°(B)∠A+∠B=180°(C)∠A+∠D=180°(D)∠A+∠C=180°3、在四边形ABCD中,若∠B=∠D,那么再添加一个条件:____________,就可以判定ABCD是平行四边形。4、如右图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=____cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=___cm时,四边形ABCD为平行四边形.5、如图,在平行四边形ABCD中,E、F、G、H分别是各边中点。求证:四边形EFGH是平行四边形。6、如图,平行四边形ABCD的对角线AC,BD相交于点O,点E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF。求证:四边形BFDE是平行四边形ABCDOFEEFGHDACB湛江二中班别:组名:姓名:718.1.2.2——平行四边形的判定(2)【学习目标】【教材p46-48页】1、掌握用一组对边平行且相等来判定平行四边形的方法2、理解和领会三角形三角形中位线定理及其应用3、会综合应用平行四边形的四种判定方法和性质来证明问题一、自主学习1、判定平行四边形的方法有哪几个:①②③。2、预习课本第46—48页3、如右图所示,△ABC各边的中点分别是D、E、F,则在△ABC中,中位线有那几条:二、合作探究1、已知:四边形ABCD,AB∥CD,AB=CD,求证:四边形ABCD是平行四边形证明:连结AC,总结:平行四边形的判定定理:2、点D、E分别是△ABC的边AB、AC的中点,求证:DE∥BC、DE=BC21.总结:三角形的中位线定理:EDCBA湛江二中班别:组名:姓名:8三、课堂检测1、判断题:一组对边平行,另一组对边相等的四边形是平行四边形;()对角线互相平分的四边形是平行四边形.()两组对角分别相等的四边形是平行四边形;()2、已知一个三角形的三边长分别为5㎝,7cm,8㎝,则连接各边中点所形成的三角形的周长为cm。3、三角形的一条中位线分三角形所形成的新三角形与原三角形的周长之和为60㎝,则原三角形的周长为cm。4、如图,△ABC中,DE是△ABC的中位线、F是BC的中点,(1)若EF=5cm,则AB=cm;若BC=9cm,则DE=cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.5、已知:如图,ABCD中,E、F分别是AC上两点,BE∥DF,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.6、已知:如图2、已知:如图(1),在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.湛江二中班别:组名:姓名:918.2.1——矩形的性质【学习目标】1、了解矩形与平行四边形的关系;2、初步认识矩形性质。3.直角三角形斜边上的中线的性质,并能运用相关性质求解。一、复习导入:1、①四边形ABCD是平行四边形的三个性质:②四边形ABCD的判定定理③连接三角形两边中点的线段叫做,三角形的中位线平行于,并且等于第三边的。2、预习课本第52—53页二、合作探究:1、矩形的定义:2.矩形的性质:(在旁边的空白处画一个矩形并通过观察或度量进行归纳)(1)边:;(2)角:;(3)对角线:。归纳:(几何语言)平行四边形矩形图形DCBADCBA边AB∥DC,AD∥,AB=DC,ADBCAB∥,AD∥,AB=DC,ADBC角_____A______D____________90A对角线1____________2AO1______________2BO______AC11____________________22AO小结1.:矩形是的平行四边形小结2.:矩形的两条对角线。矩形()平行四边形湛江二中班别:组名:姓名:10OABCDDECBA3、观察下面三个图形,你能从中看到什么?OCBADABCOODCBAAO=BO===12=12BO是斜边上的线。BO===12结论:直角三角形斜边上的中线等于的一半。4、例题:已知:矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长及周长。【随堂检测】1.矩形ABCD的对角线6ACcm,则另一条对角线________BD。2.矩形的定义中有两个条件:一是,二是.3.直角三角形斜边上的中线长时8㎝,则斜边是㎝。4.已知矩形ABCD,AC=8,则BD=,OD=。5.已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.6.矩形不一定具有的性质是()A、对角线相等B、四个角相等C、是轴对称图形D、对角线互相垂直7.已知矩形的周长是24cm,相邻两边之比是1:2,那么这个矩形的边长分别是。8.如图,已知矩形ABCD,AC=4,则BD=,∠ABC=;若∠ADB=40°,则∠ACB=°,∠BDC=°,∠COD=°。9.如图,在矩形ABCD中,E是CD上的一点,30DEA,且AEAB,求EBC的