1、体会运动变化过程中的数量变化2、从典型实例中抽象概括出函数的概念,了解函数的概念3、概括并理解函数概念中的单值对应关系•复习:1什么是变量?什么是常量?在一个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量为常量。2结合生活中的例子,谈谈你对变量,常量的理解?问题探究:汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,请先填写下表:t/时123456s/千米用含t的式子表示s,则s=.问题1:6012018024030036060t问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量就有唯一确定的对应值.问题探究:关系式为y=_____.当日场售出票x=205(张)时,票房收入y=___(元);每张电影票的售价为10元;当晚场售出票x=310(张)时,票房收入y=___(元);2050310010x问题2:当早场售出票x=150(张)时,票房收入y=___(元);1500我们发现,每当售票数量x取定一个值时,票房收入y就.随之确定一个值问题探究:问题3:w=__________;张老师用100元购买7元/件的某种商品,观察他剩余的钱w元与购买这种商品的数量m件(m≤14)之间的关系:100-7m从中可以看出:每当张老师购买这种商品数量m(m≤14)取定一个值时,他剩余的钱w(元)就_________________.唯一确定的对应值1.前面我们研究的每个问题中都有几个变量?2.同一个问题中的两个变量之间有什么联系?两个变量每个问题中的两个变量互相联系,其中一个变量取定一个值时,另一个变量就随之确定一个值.即:一个变量的值随另一个变量的值的变化而变化.函数一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是因变量,此时也称y是x的函数小试牛刀(1)“票房收入问题”中y=10x,对于x的每一个值,y都有的值与之对应,所以是自变量,y是x的函数.(2)“行程问题”中s=60t,对于t的每一个值,s都有的值与之对应,所以是自变量,_是的函数.自变量、函数、函数值:例1:指出前面三个问题中的自变量与函数.唯一x唯一stt(3)“张老师买商品问题”中w=100-7m,对于买商品件数m的每一个值,剩下的钱数w都有的值与之对应,所以是自变量,是的函数.巩固:如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有的值与之对应,称x是,y是x的.唯一mwm自变量函数唯一•例2:填表并回答问题:关系式|y|=2x.(1)对于x的每一个值,y都有唯一的值与之对应吗?(2)y是x的函数吗?x14916y2和-28和-818和-1832和-32对于x的每一个确定的值,y都有唯一确定的值与其对应,这样才能说,y是x的函数!注意:例3:下列问题中的变量y是不是x的函数?(6)y=|x|(7)|y|=xx(4)y=x2(5)y2=x(8)y=±x+5(9)y=x2+3z(x≥0)(3)y=(1)y=2x(2)y+2x=3函数一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是因变量,此时也称y是x的函数