重庆大学硕士学位论文基于无线分组的输电线路绝缘子泄漏电流在线监测系统研究姓名:陈攀申请学位级别:硕士专业:电气工程指导教师:孙才新20060501IGPRSGPRSC8051F020CPU9IIIAbstractWiththerapiddevelopingofnationaleconomy,thevoltageclassofthepowersysteminourcountryiscontinuouslyincreased,andthebadinfluenceofthecontaminationflashovergetsmoreandmoreserious.Laboratorystudiesandindustrialexperiencehaveshownthatthevariationofinsulatorsleakagecurrenthascloserelationshipwithinsulatorscontamination,whichprovidesanintegratedreflectionofthecontaminationflashover,sotheinsulatorleakagecurrentonlinemonitoringsystemisaneffectivemethodtoestimatethecontaminationdegreeandinitialfailureofinsulators.Existinginsulatorleakagecurrentonlinemonitoringsystemhassortsofdisadvantagesuchasinconvenienceofmounting,shortageofleakagecurrentmeasurementrange,fallibilityofdatatransmissionanddifficultyofdiagnosisofcontaminationconditiononinsulatorsurface.Inthispaper,thekeytechnologiesofinsulatorleakagecurrentonlinemonitoringsystemareresearchedandanewtypeofleakagecurrentremoteonlinemonitoringsystembasedonGPRSisdeveloped.Theinsulatorleakagecurrentonlinemonitoringsystemintroducedinthispaperreal-timelymonitorsthecontaminationconditionofinsulatorssurfacebydirectlymeasuringleakagecurrent,dadasampling,data-processinganddatacommunicationwithmonitoringcenter.Withthehelpofthedevice,anactivepartialaperiodiccleaningmethodwillsubstitutethepassivetraditionalperiodicgeneralcleaningmethodinordertoreduceworkloadandpreventthecontaminationflashovertoalargerextent.Non-contactleakagecurrenttransducerisadoptedinthissystemandprovidesamountingwaywithoutchangeoriginalinsulator-towerstructure.Applicationofnewtransduceradaptercircuitleadtoimprovementofperformanceandsolutionofdeficiencyinprecision,narrowbandandsensitivityofchangeinmagneticcoreparameteroftraditionalrogowskicoilbasedcurrenttransducer.Programmablevariablegainamplifieradoptedinthesignalprocessingcircuitlargelyextendtheleakagecurrentmeasurementrangeandprovideasolutiontoamplifythelargerangeleakagecurrent.TheGPRScommunicationtechnologyisappliedintheremotedatatransmission,whichimprovesthedatatransferrate,accurateandreliabilityofthesystemandcanprovideaaccuratelyreal-timelydatatransmissionofallthefieldmonitoringdata.Thesolarelectricalenergysupplysystemisusedinthissystem,whichnotonlyassureareliablepowersupplytosystem,butalsoavoidthepotentialinsulationpuncturedangerousofIVthemethodthatsupplythesystemformhighvoltagetransmissionline.Furthermore,theC8051F020isappliedastheCPUtoaccomplishdatasampling,dataprocessinganddatastorageinthissystem,whichprovideacapabilityofhighspeeddata-processingand9channelfielddatasampling.Asaconclusion,thissystemisanintegratedsystemofinsulatorleakagecurrentremoteonlinemonitoringandcanaccomplishthedatacommunicationaccurately.Stageproductionoftheinsulatorsleakagecurrentonlinemonitoringsystemresearchisachieved.Keywords:ContaminationInsulator,LeakageCurrentOnlineMonitoring,Transducer,RemoteDataTransmission11[2]10[4]213(a)(b)1.1(a)(b)Fig.1.1Thestructurediagramofthesystem4(a)(b)Fig.1.2Schematicdiagramofdataacquisitionmachineandinstallationdiagramofsensor151.3Schematicdiagramofdataacquisitionterminalmachine6Anneberg[25]1mA301mA-5mA105mA1REG001REG002[26]Z80AGPIBLCM17[9],1.44Fig.1.4TheoperatingprinciplediagramofsystemLCM8GSMGSMGSMGSMGSM,9.6kbit/sGSMRogowskiRogowski19GPRS[11]1.5101.5Fig.1.5MacroscopicView111GPRSGPRS1.6Fig.1.6SchemeofOnlineMonitoringSystemforLeakageCurrentofInsulator10ìA10ìA600mA50Hz500kHz10Hz1MHz12ADGPRSGPRSGPRSGPRSGSMPhase2.1GSMGSM9.6b/s170kb/s,GPRSGPRSGPRSSOCKETDC-DC+5V-5V+15V-15V213Rogowski2.12.1Fig.2.1MountingPositionofSensor14[12]2SO[13][14]:,2158.0'C-4.8;80%8020%40%-80%[15]AmmAHzHz[3]RogowskiRogowskiRogowskiRogowski[22]RogowskiRogowskiRogowskiRogowskiRogowskiRogowski161:NsLs(b)(a)sLMZisMI(s)I(s)Z(s)Z(s)ab2.2RogowskiFig.2.2TwoEquivalentCircuitModelofRogowskiCoil(a)EquivalentTransformerModel(b)MutuallyInductiveVoltageSourceModel2.2RogowskiLMRogowskiLSN2.2a2.2a2.3sLM1:NsLMI(s)Z(s)2.3Fig.2.3Norton-DaveyTransformLeadtoThisEquivalentCircuit2.32.4(a)2172sNLM(a)sLS(b)sLMNI(s)sMI(s)Z(s)Z(s)2.4Fig.2.5MergingFirstSideintoSecondSideLeadtoThisEquivalentCircuit2.4aMSLNL2=MNLM=2.4b2.4b2.2b2.4b2.4b2.5ZLSMdi(t)/dt2.5Fig.2.5EquivalentCircuitinTimeDomain2.5RogowskiRogowski2.6(a),2.6(b)[3][17]18(a)b2.6Fig.2.6structureandequivalentcircuitofcurrentsensor1MSLSCSRR(SL)()tui()tu02.6(b)[25]()()dttdiMtui1=(2.1)()()()()tutiRdttdiLtuSsi0++=(2.2)()()()()RtutdtduCtiS00+=(2.3)23()ti()()()()tutuRRdttduRLCRdttduCLiSSSSSS=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛++002201(2.4)14()()sMsIsURRsRLCRsCLSSSSSS1021=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛++(2.5)()()()1210++⎟⎠⎞⎜⎝⎛++==RRsRLCRsCLMssIsUsGsssssS(2.6)()()()()RRLCRRjwwCRLjwMsIsUjwGsssssS++++-==210(2.7)(2.7)219()212111⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++•-+•+•+=-ssssssssssssRRCRRLwCRRLRCLwCRRLMRjwG(2.8)abhNLsln22pm⋅=(2.9)abNhMln2pm⋅=(2.10)mNhbasssCRRL(2.8)sssssshRCRCLCRRLfpp212≈+=(2.11)()ssssssLRRCRRLRRfpp221+≈+•+=(2.12)⎟⎟⎠⎞⎜⎜⎝⎛++-+=-=ssssssssshCRRLRRRCLCRRLffBp211(2.13)hf1f(2.11)(2.12)sLR2.9sLµNsL[16][23][24](2.11)(2.12)(2.13)RRRogowski[18][19][20][3][3]Rogowski20[3]RI-V2.82.7Fig.2.7circuitofim