江南的风轻轻的吹,那样柔软,那样舒适,吹过青青芳草地,吹过盈盈碧水岸,吹过烟雨蒙蒙的江南杨柳舍。江南的风如此温柔,轻轻吹过我柔柔的发间,轻轻吹过我湿润的双眸;江南的风如此温暖,我灵敏的鼻息仿佛嗅到你谈吐间暖暖的气息;我敏感的身体仿佛触到你拉着我手时润心的温暖;江南的风如此多情,吹绿了闪闪发亮的叶子,吹红了暗香盈袖的花朵。江南的风轻轻的吹,江南的水静静的流淌。江南的海水是如此轻柔,漫过曾经你我在沙滩上的脚尖,漫过我们在沙滩上用海水飘上的贝壳画下的两颗紧紧靠近的心,漫过我们共同筑起的漂亮的小城堡。江南的小溪是多么缱绻痴缠,像一道道碧绿的绸带,绕住了山坡,绕过了小桥,绕进开阔的湖,绕进了我对你深深的思念。江南的风轻轻的吹,江南的雨慢慢的飘洒。雨儿,近看,像针,像珠子,像牛毛;远看,像细细密密的珠帘,起风了,走在雨中,像身处烟雨蒙蒙的仙境,仿佛自己也不敢相信那风雨飘飘的空际竟也是上天赐予我们谈情说爱的最美丽最飘渺的地方。我怀念雨中那个身影笔挺的你,怀念雨中那个为我撑伞的你,怀念雨中那个用迷蒙而深情的眼神望着我的你。江南的风轻轻的吹,江南的小草柔柔的长。小草碧绿,闪回顾旧知2yaxbxc二次函数的一般式:(a≠0)______是自变量,____是____的函数。xyx当y=0时,ax²+bx+c=0ax²+bx+c=0这是什么方程?是我们已学习的“一元二次方程”一元二次方程根的情况与b²-4ac的关系?我们知道:代数式b2-4ac对于方程的根起着关键的作用.复习.2422,1aacbbx有两个不相等的实数根方程时当00,0422acbxaxacb:00,0422有两个相等的实数根方程时当acbxaxacb.22,1abx没有实数根方程时当00,0422acbxaxacb.4..004222acbacbxaxacb即来表示用根的判别式的叫做方程我们把代数式一元二次方程根的情况与b²-4ac的关系探究一:二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0有什么关系?1、一次函数y=kx+b与一元一次方程kx+b=0有什么关系?2、你能否用类比的方法猜想二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的关系?以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?实际问题解:(1)当h=15时,20t–5t2=15t2-4t+3=0t1=1,t2=3当球飞行1s和3s时,它的高度为15m.1s3s15m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)当h=20时,20t–5t2=20t2-4t+4=0t1=t2=2当球飞行2s时,它的高度为20m.2s20m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)当h=20.5时,20t–5t2=20.5t2-4t+4.1=0因为(-4)2-4×4.10,所以方程无实根。球的飞行高度达不到20.5m.20.5m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(3)球的飞行高度能否达到20.5m?为什么?(4)当h=0时,20t–5t2=0t2-4t=0t1=0,t2=4当球飞行0s和4s时,它的高度为0m,即0s时,球从地面飞出,4s时球落回地面。0s4s0m以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(4)球从飞出到落地要用多少时间?从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?一般地,当y取定值时,二次函数为一元二次方程。如:y=5时,则5=ax2+bx+c就是一个一元二次方程。为一个常数(定值)从以上可以看出,已知二次函数y的值为m,求相应自变量x的值,就是求相应一元二次方程的解.例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.已知二次函数,求自变量的值解一元二次方程的根二次函数与一元二次方程的关系(1)1、二次函数y=x2+x-2,y=x2-6x+9,y=x2–x+1的图象如图所示。(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+x-2=0,x2-6x+9=0有几个根?验证一下一元二次方程x2–x+1=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?22yxx269yxx21yxx答:2个,1个,0个.,2,2.2无实数根个相等的根个根边观察边思考22yxx269yxx21yxx(3),二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?二次函数与x轴交点坐标相应方程的根22yxx269yxx21yxx(-2,0),(1,0)x1=-2,x2=1(3,0)x1=x2=3无交点无实根抛物线y=ax2+bx+c与x轴交点的横坐标是方程ax2+bx+c=0的根。一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)下列二次函数的图象与x轴有交点吗?若有,求出交点坐标.(1)y=2x2+x-3(2)y=4x2-4x+1(3)y=x2–x+1探究xyo令y=0,解一元二次方程的根(1)y=2x2+x-3解:当y=0时,2x2+x-3=0(2x+3)(x-1)=0x1=,x2=1-32所以与x轴有交点,有两个交点。xyoy=a(x-x1)(x-x2)二次函数的交点式(2)y=4x2-4x+1解:当y=0时,4x2-4x+1=0(2x-1)2=0x1=x2=所以与x轴有一个交点。12xyo(3)y=x2–x+1解:当y=0时,x2–x+1=0所以与x轴没有交点。xyo因为(-1)2-4×1×1=-30确定二次函数图象与x轴的位置关系解一元二次方程的根二次函数与一元二次方程的关系(2)有两个根有一个根(两个相同的根)没有根有两个交点有一个交点没有交点b2–4ac0b2–4ac=0b2–4ac0二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系ax2+bx+c=0的根y=ax2+bx+c的图象与x轴若抛物线y=ax2+bx+c与x轴有交点,则________________。b2–4ac≥0△>0△=0△<0oxy△=b2–4ac△>0△=0△<0oxy△=b2–4ac课堂小结二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系:二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根只有一个交点有两个相等的实数根没有交点没有实数根b2–4ac0b2–4ac=0b2–4ac0判别式:b2-4ac二次函数y=ax2+bx+c(a≠0)图象一元二次方程ax2+bx+c=0(a≠0)的根xyO与x轴有两个不同的交点(x1,0)(x2,0)有两个不同的解x=x1,x=x2b2-4ac>0xyO与x轴有唯一个交点)0,2(ab有两个相等的解x1=x2=ab2b2-4ac=0xyO与x轴没有交点没有实数根b2-4ac<0