三峡大学硕士学位论文飞轮电池电力转换控制器的分析与研究姓名:李志雄申请学位级别:硕士专业:机械制造及其自动化指导教师:汤双清20090501II-PIBPMRASFEPSEPSFEPSIIIAbstractOwingtomanyuniqueperformances,flywheelbatteryhasbeenbecominganewmemberofthebatteryfamily,andhasbeentakingtheplaceofthechemicalbatteryinmanyaspects.Thankstothefastdevelopmentofnewcompositematerials,rareearthpermanentmagnet,electricalmachinetechnology,magneticsuspensiontechnologyandpowerelectronics,itsapplicationhasinvolvedinaerospace,electricvehicles,distributingpowergenerationsystem,electricpowerqualityandenergystoragegeneration,uninterruptiblepowersupplies(UPS),andsoon.Inthisthesis,thePowerConversionControloftheflywheelbatteryisanalyzedandresearcheddeeply,themaincircuitofcharginganddischargingcontrolprocessisdesigned,andanin-depthexplorationontheadvancedcontrolalgorithmsismadetoimproveandenhancethedynamicperformanceaswellasthereliabilityofthecontrolsystem.Finally,theapplicationstudyoftheflywheelenergystoragesysteminUPSispresented.Thisthesisfirstanalyzesthemathematicmodelofcharginganddischargingproceduresoftheflywheelbattery.ThentheoperationprincipleandthebasictheoryofVectorControlforflywheelbatteryareallilluminated.TheSVPWMbasedvectorcontrolsimulationmodelisestablished,throughwhichthefeasibilityofthedesignedcontrolstrategyistestified.Thenseveralimprovedintelligentcontrolalgorithms,includinghybridfuzzy-PIcontrol,improvedsinglenueroPIDcontrolandBP-PIDwithvariablelearningrate,areapplyingtotheself-adaptiedcontrolofthepowerconversiontoimproveitsdynamicperformance.Meanwhile,thecontrolperformanceofeachintelligentcontrolstrategyisanalyzedandcomparedwitheachother,thustheoptimizedadvancedalgorithmforthePowerConversionControlcanbegotten.Next,inordertoenhancethecontrolreliabilityofthePowerConversionControl,anovelsensorlessvectorcontrolsystemisstudiedinthisthesis.Sensorlessisamajorfeatureofthispowerconversioncontrolsystem.Whileinahighperformancespeedclosed-loopcontrolsystem,thespeedsignalisessentialforthefeedback.Asensorlessmethodishelpfulforreducingthecostandimprovingthereliabilityofthesystem.AModelReferanceAdaptiveSystem(MRAS)basedspeedsensorlessmethodtogetherwiththefuzzyspeedcontrolstrategyisappliedtotheflywheelenergystoragesystem.Noextrasensorisneededinthismethod,andtherotorspeed/positionisobservedandestimatedbythemeansofMRAS.Theproposedmethodisvalidatedbythesimulationresultsofthesensorlesschargingcontrolsystem.IVFortheapplicationinpowerstation,thesystemcontrolschemeofflywheelbatterybasedEmergencyPowerSupplysystem,calledasFEPSinthisthesis,isputforth.TherelationshipofparametersbetweenflywheelbatteryandEPSisanalyzed,anditseffectivenessinpoweradjustmentandpowerfailureresponseisverifiedinthesimulationoftheproposedFEPSsystem.Keywords:flywheelbattery,powerconversioncontroller,intelligentcontrol,sensorless,FEPSI12111“”185%95%≤75%≈60%50%≈90%≈90%()21(FlywheelEnergyStorage)20[1]19701980[2]250[3][4]IGBT(InsulatedGateBipolarTransistor)FET(FieldEffectTransistor)[5][6]“”9090FFT[7]31.1[1]1.1()[8]1.11.2[9]1.2[9]20-30kw.hr12%5-20w.hr/kg25%[10]515[11][12][13,14][15]41.15-20whr/kg150whr/kg75whr/kg109whr/kg130-200whr/kg100020007001170500001.11234520685~957578[16,17]103-5[18~20]1.21.2.15212kEIω=1.1EkIω1.1[21]241122Irmrhπρ==1.2rhρ22440011()()44iiImrrhrrπρ=+=+1.3rori1.21.3EkωωEkσσ[22,23]6×104r/min4.5~9×105r/min[22]1.2[5]kg/m3σMPakWh/kg/kgE20001000.01411.0E192014700.2124.6T1000152019500.35101.8AS4C151016500.3031.3(FESS)/vmeKeKσσρ==1.46evemK01KK1.2[5]1.2.2/[24][25][26,27]HTS1.2.3SCRsGTOsIGBTsSCRs5kV3000A500HzSCRsGTOsGTOs6kV2000A1000HzIGBTs10kHz1.3A.Stodola19177072090AFSTrinityPowerUS-flywheel1996(26.5MVA6600V)209019978kg23cm199848000r/min580m/s199915kg30cm20014700650m/s500w.h[28][5,29]12-2000++0.6kWh50kW-3200144115200010MJ8FESS98%-102%10kW156UPS2001650MJUPSUPS50MW13s91%-95%77kW/80V/50A1000HzNiH2EOS-AMI35%55%825MJ350kW5MWKaman,[30]1.41231.4.1950001.4.2/1.52003A0012005ABA29410-PIMRAS/-PIEPSEPSFEPSEPSFEPS112“/”[31]2.1/60000r/min(PM)[13][32]PM(BLDC)(PMSM)BLDCBLDCBLDCPMSMBLDCPMSM122.1PMSM(a)(b)(c)PMSM[33]2.1PMSM2.1(a)2.1(b)2.1(c)SPMSM2.22.2.1SPMSM(VVVF)(VC)(DTC)VVVFVVVF1971Blaschkelll[33](IM)(VC)PMSMPMSMPMSMVC13TakahashiDePenbrock(DTC)[34,35]DTCDTCSPMSM[33]2.2.2PWMPWMPWMPWMPWMSPWMPWMSVPWM[36,37]SVPWM[38]SVPWM2.4SIMULINKSVPWMSVPWMPWM14[39,40]SVPWM(1)V*(2)V*(3)(4)PWM[38][41]2.4MATLAB/SIMULINKSVPWM2.2.3PWM[42-43]SVPWMPWMSPWM,SVPWMSPWM15%,[43]SVPWM2.32.2“”“”PWM1PWM“”PWM2“”SA“”121SPMSMSB“”21SPMSM2IGBT1IGBT1CdIGBTCd15222.22.3DSP2.32.2DSPDSP12PWMDSPEVAPWM1-PWM6IGBTIGBTEVB6PWM7-PWM12IGBTSPMSMDSPEVBPWM7-PWM12IGBT2.42.4.1PMSM(d-q)PMSMid=0PMSMqPMSMqdSPMSMPMSMVCPMSMdq−qaqqrddaddrquRipuRipψωψψωψ=++=+−(2.1)16qqqdddfLiLiψψψ==+(2.2)3[()]2[]enfqdqdqrrneLnTpiLLiiJppTBTpψωω=+−=−−(2.3)quduqLdLqidiqdaRdqrωfψeTJBLTnp0fpψ=pSPMSMdqLL=enfqTpiψ=(2.4)(2.1)(2.2)dq(2.4)qddqψψ?22sdqiii=+isid=0qiqdqqqqqfdqquRiLpiruLirωψω=++=−(2.5)(2.5)diq(2.4)2.5id=0SPMSMPWMPISVPWMiaibClarkePark(dq)dqidiqiq*id*PIiq*id*0PI17ParkSVPWMid*=0+-SPMSMSVPWMPark-1PIPIPIn*+-ClarkePark+-UdciaibUq*Ud*iq*iqidU*U*n2.52.4.22.5Matlab2.60.1s380V2.875Ωq8.5µHd8.5µH0.175Wb4B=0J=8e-4kg*