经济应用数学基础(一)-微积分-课后习题答案-高

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1    第一章 函  数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9;     (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.2    (2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为Df=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为Df=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为Df=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为Df=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2;        (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为Df=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:3    x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为Df=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为Df=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为Df=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为Df=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为Df=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3,   4    f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2;      (2)y=e|x|.解 (1)易知该函数定义域为Df=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:5    (1)y=x21+x2;     (2)y=e-x2;(3)y=sin1x;(4)y=11-x.解 (1)因为|y|=x21+x2=1-11+x2≤1所以,该函数有界.(2)因为|y|=e-x2=1ex2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x≠0),所以,该函数有界.(4)对任意给定的正数M>0,令x0=1-12M≠1,则|y(x0)|=11-1-12M=2M>M此式表明,对任意给定的M>0,存在点x0∈Df,使|y(x0)|>M.因此,该函数无界.8.讨论下列函数的奇偶性:(1)f(x)=xsinx+cosx;    (2)y=x5-x3-3;(3)f(x)=ln(x+1-x2);(4)f(x)=1-x,x<0,1,x=0,1+x,x>0.解 (1)因为f(-x)=(-x)sin(-x)+cos(-x)=xsinx+cosx=f(x),x∈(-∞,+∞)所以,该函数为偶函数.(2)因为f(-x)=-x5+x3-3≠f(x)或-f(x)所以,该函数既不是偶函数,也不是奇函数.(3)因为f(-x)=ln(-x+1+x2)=ln(1+x2)-x2x+1+x26    =-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx;    (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x;        (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.7    解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)8    (5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=logax;      (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=logau与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)9    已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Qd-102=0p-2Q2s+3Qs+71=0试求该商品供需均衡时的均衡价格pe和均衡数量Qe.解 供需均衡的条件为Qd=Qs=Qe,对应均衡价格为pe,于是有3p3+Q2

1 / 361
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功