2009年全国各地中考数学压轴题参考答案及评分标准(三)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2009年全国各地中考数学压轴题参考答案及评分标准(三)201.解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2.···································1分∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x2-4x+6令-2(x+3)(x-1)=0,得x1=-3,x2=1∵点A在点B右侧,∴A(1,0),B(-3,0)设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得620=+=+-bkbk解得22==-bk∴直线AC的函数关系式为y=-2x+2.···················3分(2)①设P点的横坐标为m(-2≤m≤1),则P(m,-2m+2),M(m,-2m2-4m+6).················4分∴PM=-2m2-4m+6-(-2m+2)=-2m2-2m+4=-2(m+21)2+29∴当m=-21时,线段PM长度的最大值为29.··········6分②存在M1(0,6).···········································································7分M2(-41,855).····································································9分点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考)ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△ANP∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x2-4x+6得-2x2-4x+6=6,∴x=-2(舍去)或x=0∴M1(0,6)(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴重合,点N与原点O重合)ⅱ)如图2,当C为直角顶点时,设M(m,-2m2-4m+6)(-2≤m≤1)过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D则△CMP∽△NAP又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD∴ODCH=OAMH∵C(-2,6),∴CH=m+2,MH=-2m2-4m+6-6=-2m2-4mOABxyCP图1MOABxyCPMN在y=-2x+2中,令x=0,得y=2∴D(0,2),∴OD=2∴22m=1422mm整理得4m2+9m+2=0,解得m=-2(舍去)或m=-41当m=-41时,-2m2-4m+6=(-41)2-4×(-41)+6=855∴M2(-41,855)202.解:(1)∵抛物线抛物线y=x2+bx+c经过A(1,0),B(0,2)∴ccb++=++=00210解得23==-cb∴所求抛物线的解析式为y=x2-3x+2.·········································2分(2)∵A(1,0),B(0,2),∴OA=1,OB=2可得旋转后C点的坐标为(3,1).···············································3分当x=3时,由y=x2-3x+2,得y=2可知抛物线y=x2-3x+2过点(3,2).∴将原抛物线沿y轴向下平移1个单位后过点C∴平移后所得图象的函数关系式为y=x2-3x+1.·····························5分(3)∵点N在y=x2-3x+1上,∴可设点N的坐标为(x0,x02-3x0+1)∵y=x2-3x+1=(x-23)2-45,∴其对称轴为x=23.······················6分①当0<x0<23时,如图①∵S△NBB1=2S△NDD1∴21×1×x0=2×21×1×(23-x0)∴x0=1此时x02-3x0+1=-1∴点N的坐标为(1,-1).······························8分当x0>23时,如图②同理可得21×1×x0=2×21×1×(x0-23)∴x0=3此时x02-3x0+1=1∴点N的坐标为(3,1)OABxyCPN图2MDHyBOADx图①D1CB1NyBOADx图②D1CB1N综上,点N的坐标为(1,-1)或(3,1).·······10分203.解:(1)把x=0代入y=-x-3,得y=-3,∴C(0,-3)∵抛物线y=ax2+bx+c过点C(0,-3),∴c=-3∵抛物线的的顶点D(ab2-,abac442-)在直线y=-x-3上∴aba4342--)(=ab2-3,解得b=0或b=-2···········································2分当b=0时,点C、D重合,不合题意,舍去∴b=-2,∴D(a1,-3-a1)如图1,过D作DH⊥y轴于H,在Rt△CHD中,CD2=CH2+HD2即(2)2=[-3-(-3-a1)]2+(a1)2,解得a=1或a=-1当a=-1时,△=b2-4ac=(-2)2-4×(-1)×(-3)=-8<0,函数图象与x没有交点,不合题意,舍去.·········································································3分∴所求抛物线的解析式为y=x2-2x-3.·········································4分(2)设直线MN的解析式为y=k,代入y=x2-2x-3,得x2-2x-3=k即x2-2x-3-k=0,解得x1=1+4+k,x2=1-4+k(k>-3)∴线段MN的长为42+k∵以MN为直径的圆与x轴相切,∴4+k=|k|.···························5分整理得k2-k-4=0,解得k=2171+或k=2171-.·······················6分设该圆的半径为r,则当k=2171+时,直线MN在x轴的上方∴r=k=2171+.········································7分当k=2171-时,直线MN在x轴的下方∴r=-k=2171+-.··································8分(3)在y=x2-2x-3中,令y=0,得x1=-1,x2=3∵A在B的左侧,∴A(-1,0),B(3,0)∴OA=1,OB=3在y=-x-3中,令y=0,得x=-3∴E(-3,0),∴OE=OC=3∵AF∥EC,∴△AOF∽△EOCOABxyCD图1HOABxyCDM图2NMN∴OFOA=OCOE=1,∴OF=OA=1,∴F(0,-1)∴S四边形AECF=S△EOC-S△AOF=21×3×3-21×1×1=4.······················9分又A(-1,0),可得直线AE的解析式为y=-x-1如图3,设直线PB分别与AF、EC交于点G、H,设G(m,-m-1)易得直线PB的解析式为y=mm-+31x-mm-+333(-1<m<0)联立333331-----=++=xmmxmmyy解得233233+==--mmxy∴H(233-m,233+-m)S四边形AEHG=S△BEH-S△BAG=21×6×233+m-21×4×(m+1)=255+m若直线PB将四边形AECF的面积平分,则S四边形AEHG=21S四边形AECF=2即255+m=2,解得m=-51∵OE=OC,OA=OF,∴AE=FC∴四边形AECF是等腰梯形,设其高为h当S四边形AEHG=S四边形CFGH时,有21(AG+EH)·h=21(GF+HC)·h即AG+EH=GF+HC∴AG+EH+AE=GF+HC+FC∴此时直线PB也将四边形AECF的周长平分.·······························10分当m=-51时,直线PB的解析式为y=41x-43联立3243412---==xxxyy解得16154311--==yx0322==yx∵B(3,0),∴P(-43,-1615)··················································11分综上所述,在抛物线上存在点P(-43,-1615),使直线PB恰好将四边形AECF的周长和面积同时平分.············································································12分OABxyCDF图3EGHP204.解:(1)如图1,过B作BD⊥OA于D∵B(7,4),tan∠BAO=34∴OD=7,BD=4,AD=3.·················1分∴OA=OD+AD=10∴点A的坐标为(10,0).··················2分∵等腰梯形OABC∴点C的坐标为(3,4)·····················3分(2)∵抛物线经过O、B、C三点∴设抛物线的解析式为y=ax2+bx(a≠0),把B(7,4),C的坐标为(3,4)代入,得baba3947494+=+=.·········································································4分解得2140214==-ba.········································································5分故所求抛物线的解析式为y=-214x2+2140x.···································6分(3)设经过点P且与等腰梯形一腰平行的直线分别交BC、OA于点E、FBC=7-3=4①如图2,当EF∥OC时,则四边形OFEC是平行四边形,设OF=x若S□OFEC=21S梯形OABC则有4x=21×21(4+10)×4解得x=27,∴F(27,0).······················7分∴E点的横坐标=27+3=213,∴E(213,4)········································8分设直线EF的解析式为y=kx+b(k≠0)则bkbk+=+=2702134解得31434-==bk∴直线EF的解析式为y=34x-314.··············································9分由34x-314=-214x2+2140x,得x=21073∴在第一象限内,所求点P的横坐标为21073+.···························10分②如图3,当EF∥AB时,则四边形ABEF是平行四边形ABxyCO图2PFEABxyCO图1D若S□ABEF=21S梯形OABC由①知AF=27,∴OF=10-27=213,∴F(213,0)∴E点的横坐标=213-3=27,∴E(27,4)设直线EF的解析式为y=mx+n(m≠0)则nmnm+=+=2130274解得32634==-nm∴直线EF的解析式为y=-34x+326.·········································11分由-34x+326=-214x2+2140x,得x=210717∴在第一象限内,所求点P的横坐标为210717-.·························12分205.证明:(1)∵BC是⊙O的直径,∴∠BAC=90°又∵ME⊥BC,BM平分∠ABC,∴AM=ME,∠AMN=∠EMN又∵MN=MN,∴△△ANM≌△ENM.········································3分(2)∵AB2=AF·AC,∴ACAB=ABAF又∵∠BAC=∠FA

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功