2009年全国各地中考数学压轴题参考答案及评分标准(二)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2009年全国各地中考数学压轴题参考答案及评分标准(二)101.解:(1)当t=4-3时,四边形FBCG为正方形.······································1分当0<t≤4时,四边形AEGD为平行四边形.··································2分(2)由题意知点D、C的坐标分别为(1,3),(5,3)························4分∵抛物线经过原点O(0,0),∴设抛物线的解析式为y=ax2+bx(a≠0).将D、C两点坐标代入得35253=+=+baba,解得35653==-ba····················································6分∴抛物线的解析式为y=-53x2+536x········································7分(3)存在.∵点Q在抛物线上,∴点Q(x,-53x2+536x)过点Q作QM⊥x轴于M,如图.∵∠DAB=60°,CD=4,∴AB=5.∴S△ABQ=21AB·QM=21×5×|-53x2+536x|=21|-3x2+36x|······················································8分∵EG的延长线与抛物线交于x轴的上方∴-53x2+536x>0,∴-3x2+36x>0.∴S△ABQ=21(-3x2+36x)∵S梯形ABCD=21(CD+AB)·BC=21(4+5)×2×23=329······································································9分若S△ABQ=S梯形ABCD,则21(-3x2+36x)=329.整理得x2-6x+9=0,解得x=3.················································10分DCB(A)FEGOxyQM把x=3代入抛物线的解析式,得y=-53×32+536×3=359,即MQ=359.∵∠QEM=60°,∴EM=o60tanMQ=3359=59.······························11分∴t=3-59=56(秒).∴存在这样的时刻t,使得△ABQ的面积与梯形ABCD的面积相等,此时t=56秒.················································································12分102.解:(1)A(0,2),B(4,0)···································································2分设直线AB的解析式为y=kx+b,则有042=+=bkb,解得221==-bk∴直线AB的解析式为y=-21x+2.······························3分(2)ⅰ)①当点E在原点和x轴正半轴上时,重叠部分为△CDE,如图①∴S=S△CDE=21CE·CD=21BC·CD=21(4-x)(-21x+2)=41x2-2x+4∵当点E与原点O重合时,CE=21BO=2,∴2≤x<4.···············4分②当点E在x轴的负半轴上时,设DE与y轴交于点F,则重叠部分为梯形CDFO,如图②∵△FEO∽△ABO,∴OEOF=OBOA=21,∴OF=21OE.又∵OE=4-2x,∴OF=21(4-2x)=2-x∴S=S梯形CDFO=21(OF+CD)·OC=21[2-x+(-21x+2)]·x=-43x2+2x.············5分∵当点C与原点O重合时,点C的坐标为(0,0)∴0<x<2.··········································································6分综合①②得S=424124322++--xxxx········································7分ⅱ)①∵当2≤x<4时,S=41x2-2x+4=41(x-4)2,∴抛物线的对称轴为x=4∵抛物线开口向上,∴当2≤x<4时,S随x的增大而减小图①AOBxyDCE(2≤x<4)(0<x<2)图②AOBxyDCEF∴当x=2时,S的最大值=41(2-4)2=1.······························8分②当0<x<2时,S=-43x2+2x=-43(x-34)2+34,∴抛物线的对称轴为x=34∵抛物线开口向下,∴当x=34时,S有最大值为34.················9分综合①②,当x=34时,S有最大值为34.······························10分ⅲ)存在,点C的坐标为(23,0)和(25,0).·····························14分附:详解:①当Rt△ADE以点A为直角顶点时,作AE⊥AB交x轴负半轴于点E,如图③∵Rt△AOE∽Rt△BOA,∴OAOE=OBOA=21∵OA=2,∴OE=1∵OE+2OC=4,∴OC=21×(4-1)=23∴点C的坐标为(23,0)②当Rt△ADE以点E为直角顶点时,如图④∵∠AED=90°,∴∠AEO+∠DEC=90°∵∠DEC=∠DBC,∴∠AEO+∠DBC=90°∵∠BAO+∠DBC=90°,∴∠AEO=∠BAO∴Rt△AOE∽Rt△BOA,∴OAOE=OBOA=21,∴OE=1∴OC=1+21×(4-1)=25∴点C的坐标为(25,0)综上所述,存在这样的点C,使得△ADE为直角三角形,点C的坐标为:C1(23,0)和C2(25,0)103.解:(1)把x=0代入y=-2x+4,得y=4.∴C(0,4).··············································································1分∵矩形OABC,∴BC=OA=3,AB=OC=4.∴B(-3,4).···········································································2分(2)∵二次函数y=-21x2+bx+c的图象经过B、C两点∴4433212==---)(ccb+解得423==cb······································4分∴二次函数的解析式为y=-21x2-23x+4.······································6分图④AOBxyDCE图③AOBxyDCE(3)证明:连结AC,在Rt△AOC中,AC=22OCOA+=2243+=5.∵y=-2x+4,当y=0时,x=2,∴D(2,0).∵AD=OA+OD=3+2=5,∴AC=AD.∵P是CD的中点,∴AP⊥CD.·····················································9分(4)存在.······················································································10分方法一:假设四边形APCM为矩形,过点M作MN⊥x轴于N.在Rt△COD中,∵CD=22ODOC+=2224+=52.∴MA=PC=21CD=5∵MA∥CD,∴∠MAN=∠CDO.又∵∠MNA=∠COD=90°,∴△MNA∽△COD.·····························12分∴COMN=ODNA=CDMA.∴MN=5254=2,NA=5252=1.∵NO=NA+OA=1+3=4∴M(-4,2).······································13分把x=-4代入y=-21x2-23x+4,得y=-21×(-4)2-23×(-4)+4=2.∴点M在抛物线上.∴存在这样的点M,使以A、P、C、M为顶点的四边形为矩形.··········14分方法二(原参考答案中没有,本人添加,仅供参考):过点作AM∥CD交抛物线于点M,连结CM.∵MA∥CD,直线CD的斜率为-2.∴设直线MA的解析式为y=-2x+m,把A(-3,0)代入,得m=-6.∴直线MA的解析式为y=-2x-6联立42321622+xxxyy----==解得24=-=yx∴M(-4,2).∴MA=22234++)(-=5在Rt△COD中,∵CD=22ODOC+=2224+=52.∴PC=21CD=5∴MA=PC.∵MA∥CD,∴四边形APCM为平行四边形.又∵AP⊥CD,∴∠APC=90°.∴四边形APCM为矩形.OCBAPDxyNM∴存在这样的点M,使以A、P、C、M为顶点的四边形为矩形.104.解:(1)方法一:∵抛物线经过原点O(0,0),∴设抛物线的解析式为y=ax2+bx(a≠0).把A(1,1),B(3,1)代入上式得:·············································1分1391==baba++解得3431==ba-·······················································3分∴经过O、A、B三点的抛物线解析式为y=-31x2+34x·······················4分方法二:∵A(1,1),B(3,1),∴抛物线的对称轴为直线x=2.设抛物线解析式为y=a(x-2)2+h(a≠0).······································1分把O(0,0),A(1,1)代入上式得:12102022==)()(--haha++解得3431==ha-·················································3分∴经过O、A、B三点的抛物线解析式为y=-31(x-2)2+34·················4分(2)①当0<t≤2时,重叠部分为△OPQ,过点A作AD⊥x轴于点D,如图1.在Rt△AOD中,AD=OD=1,∠AOD=45°.在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.∴OQ=PQ=22t.∴S=S△OPQ=21OQ·PQ=21×22t×22t=41t2(0<t≤2)·························································6分②当2<t≤3时,设PQ交AB于点E,重叠部分为梯形AOPE,作EF⊥x轴于点F,如图2.∵∠OPQ=∠QOP=45°∴四边形AOPE是等腰梯形∴AE=DF=t-2.∴S=S梯形AOPE=21(AE+OP)·AD=21(t-2+t)×1=t-1(2<t≤3)······················································8分③当3<t<4时,设PQ交AB于点E,交BC于点F,重叠部分为五边形AOCFE,如图3.∵B(3,1),OP=t,∴PC=CF=t-3.2OABCxy113PQ图1DP2OABCxy113图2DEFQP2OABCxy113DEFQ∵△PFC和△BEF都是等腰直角三角形∴BE=BF=1-(t-3)=4-t∴S=S五边形AOCFE=S梯形OABC-S△BEF=21(2+3)×1-21(4-t)2=-21t2+4t-211(3<t<4)·················································

1 / 100
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功