各地2018年中考数学试卷分类汇编-概率专题(pdf-含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

概率专题一.选择题1.(2018·湖北随州·3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接PA.PB.OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.2.(2018·湖北襄阳·3分)下列语句所描述的事件是随机事件的是()A.任意画一个四边形,其内角和为180°B.经过任意点画一条直线C.任意画一个菱形,是屮心对称图形D.过平面内任意三点画一个圆【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A.任意画一个四边形,其内角和为180°是不可能事件;B.经过任意点画一条直线是必然事件;C.任意画一个菱形,是屮心对称图形是必然事件;D.过平面内任意三点画一个圆是随机事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(2018·湖南怀化·4分)下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生【分析】根据调查的方式、中位数、可能性和样本知识进行判断即可.【解答】解:A.调查舞水河的水质情况,采用抽样调查的方式,正确;B.数据2.0,﹣2,1,3的中位数是1,错误;C.可能性是99%的事件在一次实验中不一定会发生,错误;D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000,错误;故选:A.【点评】此题考查概率的意义,关键是根据调查的方式、中位数、可能性和样本知识解答.4.(2018•江苏徐州•2分)下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数【分析】根据概率、平行线的性质、负数的性质进行填空即可.【解答】解:A.抛掷1个均匀的骰子,出现6点向上的概率为,故A错误;B.两条平行线被第三条直线所截,同位角相等,故B错误;C.366人中平年至少有2人的生日相同,闰年可能每个人的生日都不相同,故C错误;D.实数的绝对值是非负数,故D正确;故选:D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.5.(2018•江苏徐州•2分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【解答】解:设小正方形的边长为1,则其面积为1.∵圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为,即圆的直径为,∴大正方形的边长为,则大正方形的面积为×=2,则小球停在小正方形内部(阴影)区域的概率为.故选:C.【点评】用到的知识点为:概率=相应的面积与总面积之比;难点是得到两个正方形的边长的关系.6.(2018•江苏无锡•3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条【分析】将各格点分别记为1.2.3.4.5.6.7,利用树状图可得所有路径.【解答】解:如图,将各格点分别记为1.2.3.4.5.6.7,画树状图如下:由树状图可知点P由A点运动到B点的不同路径共有5种,故选:B.【点评】本题主要考查列表法与树状图,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.7.(2018•江苏淮安•3分)某射手在相同条件下进行射击训练,结果如下:射击次数n102040501002005001000击中靶心的频数m919374589181449901击中靶心的频率0.9000.9500.9250.9000.8900.9050.8980.901该射手击中靶心的概率的估计值是0.90(精确到0.01).【分析】根据表格中实验的频率,然后根据频率即可估计概率.【解答】解:由击中靶心频率都在0.90上下波动,所以该射手击中靶心的概率的估计值是0.90,故答案为:0.90.【点评】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.8.(2018•江苏苏州•3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故选:C.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.9.(2018•内蒙古包头市•3分)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A.某个数的绝对值大于0,是随机事件,故此选项错误;B.某个数的相反数等于它本身,是随机事件,故此选项错误;C.任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D.长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故选:C.【点评】此题主要考查了随机事件以及确定事件,正确把握相关定义是解题关键..10.(2018•山东烟台市•3分)下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖【分析】利用概率的意义和必然事件的概念的概念进行分析.【解答】解:A.367人中至少有2人生日相同,正确;B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C.天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D.某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.【点评】此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.11.(2018•山东聊城市•3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.13.(2018•杭州•3分)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.【答案】B【考点】概率公式,复合事件概率的计算【解析】【解答】解:根据题意可知,这个两位数可能是:31.32.33.34.35.36,,一共有6种可能得到的两位数是3的倍数的有:33.36两种可能∴P(两位数是3的倍数)=【分析】利用列举法求出所有可能的结果数及得到的两位数是3的倍数的可能数,利用概率公式求解即可。14.(2018•湖州•3分)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.【答案】C【解析】分析:将三个小区分别记为A.B.C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A.B.C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.(2018•金华、丽水•3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【解析】【解答】解:P(指针停止后落在黄色区域)=,故答案为:B。【分析】角度占360°的比例,即为指针转到该区域的概率。16.(2018•广西玉林•3分)某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【解答】解:A.抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B.掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.17.(2018•广西南宁•3分)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:积﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为=,故选:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(2018•福建A卷•4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A.两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B.两枚骰子向

1 / 52
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功