第二章基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果axn,那么x叫做a的n次方根,其中n1,且n∈N*.负数没有偶次方根;0的任何次方根都是0,记作00n。当n是奇数时,aann,当n是偶数时,)0()0(||aaaaaann2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*nNnmaaanmnm,)1,,,0(11*nNnmaaaanmnmnm0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(注意底数都是大于0)(1)ra·srraa),,0(Rsra;(2)rssraa)(),,0(Rsra;(3)srraaab)((0,b0,,)arsR.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(aaayx且叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a10a1654321-1-4-224601654321-1-4-224601定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,)1a0a(a)x(fx且值域是:当a0时→)]b(f),a(f[。当b0时→==)]a(f),b(f[;(2)若0x,则1)x(f;)x(f取遍所有正数当且仅当Rx;(3)对于指数函数)1a0a(a)x(fx且,总有a)1(f;【用于比较底数大小时取x=1】☆☆☆解题应用:1.定义域。。。2.恒过定点。。。3.单调性。。。