高一数学必修1-函数的最大(小)值新-ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

观察下列函数图象,体会它们的特点:1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值2.最小值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值函数的最大值和最小值统称为函数的最值2、函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).注意:1、函数最大(小)值首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;例4.求函数在区间[2,6]上的最大值和最小值.12xy解:设x1,x2是区间[2,6]上的任意两个实数,且x1x2,则)1)(1()(2)1)(1()]1()1[(21212)()(121212122121xxxxxxxxxxxfxf由于2x1x26,得x2-x10,(x1-1)(x2-1)0,于是)()(,0)()(2121xfxfxfxf即所以,函数是区间[2,6]上的减函数.12xy因此,函数在区间[2,6]上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4.12xy12xy变式1:求函数在所给区间上的最值)6,2[121xxy,)(]6,2122(,)(xxy)6,2123(,)(xxy]6,2[12xxy,变式2:求函数的值域]6,2[12xxy,归纳小结1、函数的最大(小)值及其几何意义.2、利用函数的单调性求函数的最大(小)值.练习:求所给函数的值域32)(12xxxf)(]0,1[32)(22xxxxf,)(]4,1[32)(32xxxxf,)(课堂练习1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是()A、a≥3B、a≤3C、a≥-3D、a≤-3D2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f(x)在[1,2]上的值域____________.[21,49]2.最小值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值证明:函数f(x)=1/x在(0,+∞)上是减函数。证明:设x1,x2是(0,+∞)上任意两个实数,且x1x2,则f(x1)-f(x2)=21122111xxxxxx由于x1,x2得x1x20,又由x1x2得x2-x10所以f(x1)-f(x2)0,即f(x1)f(x2),0因此f(x)=1/x在(0,+∞)上是减函数。取值判断符号变形作差下结论

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功