五升六暑期奥数培训教材

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1五升六暑期奥数培训教材目录第1讲小数的巧算与速算第2讲用等量代换求面积第3讲数学游戏-----智取火柴第4讲和差问题第5讲和倍问题第6讲差倍问题第7讲年龄问题第8讲:分解质因数第9讲:最小公倍数第10讲还原问题第11讲周期问题第12讲鸡兔同笼问题与假设法第13讲盈亏问题与比较法(一)第14讲盈亏问题与比较法(二)第15讲逻辑问题2第一讲小数的巧算与速算【例1】.简算:(1)9968068...思路导航:题中,9.9接近10,且6.8和0.68都是有6、8这两个数字。解法一:解法二:9968068...9968068...=99×0.68+1×0.68=9.9×6.8+0.1×6.8=(99+1)×0.68=(9.9+0.1)×6.8=100×0.68=10×6.8=68=68想想还有别的解法吗?同步导练一:(1)272.4×6.2+2724×0.38(2)1.25×6.3+37×0.125(3)7.24×0.1+0.5×72.4+0.049×724(4)6.49×0.22+258×0.0649+5.3×6.49+64.9×0.19【例2】:(2+0.48+0.82)×(0.48+0.82+0.56)-(2+0.48+0.56)×(0.48+0.82)思路导航:整个式子是乘积之差的形式,它们构成很有规律,如果把2+0.48+0.82用A表示,把0.48+0.82用B表示,则原式化为A×(B+0.56)-(A+0.56)×B,再利用乘法分配律计算,大大简化了计算过程.解:设A=2+0.48+0.82B=0.48+0.82,原式=A×(B+0.56)-(A+0.56)×B=A×B+A×0.56-(A×B+0.56×B)=A×B+A×0.56-A×B-0.56×B=0.56×(A-B)=0.56×2=1.123同步导练二:(1)(3.7+4.8+5.9)×(4.8+5.9+7)-(3.7+4.8+5.9+7)×(4.8+5.9)(2)(4.6+4.8+7.1)×(4.8+7.1+6)-(4.6+4.8+7.1+6)×(4.8+7.1)【例三】:计算76.8÷56×14思路导航:这道题是乘除同级运算,解答时,利用添括号法则,在“÷”后面添括号,括号里面要变号,“×”变“÷”,“÷”变“×”。不过,同学们请注意,这种方法只适用于乘、除同级运算。解:76.8÷56×14=76.8÷(56÷14)=76.8÷4=19.2同步导练三:(1)144÷15.6×13(2)6355711(3)()()4875812425274【例四】:0.999×0.7+0.111×3.7思路导航:本类题可以将原式进行合理的等值变形后,再运用适当的方法进行简便运算=0.111×9×0.7+0.111×3.7=0.111×6.3+0.111×3.7=0.111×(6.3+3.7)=0.111×10=1.11同步导练四:(1)0.999×0.6+0.111×3.6(2)0.222×0.778+0.444×0.111(3)0.888×0.9+0.222×6.4(4)0.111×5.5+0.555×0.95.下面有两个小数:a=0.00…0125b=0.00…081996个02000个0试求a+b,a-b,ab,ab.5第2讲用等量代换求面积一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。所以,阴影部分的面积是17厘米2。例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。6分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD的面积,就能依次求出三角形ECB的面积和EC的长,从而求出ED的长。梯形ABCD面积=(8+4)×6÷2=36(厘米2),三角形ECB面积=36-18=18(厘米2),EC=18÷6×2=6(厘米),ED=6-4=2(厘米)。例4下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差。分析:直接求出三角形BCO与三角形EFO的面积之差,不太容易做到。如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了。解法一:连结B,E(见左下图)。三角形BCO与三角形EFO都加上三角形BEO,则原来的问题转化为求三角形BEC与三角形BEF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。7解法二:连结C,F(见右上图)。三角形BCO与三角形EFO都加上三角形CFO,则原来的问题转化为求三角形BCF与三角形ECF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。解法三:延长BC交GF于H(见下页左上图)。三角形BCO与三角形EFO都加上梯形COFH,则原来的问题转化为求三角形BHF与矩形CEFH的面积之差。所求为(4+2)×(10-7)÷2-2×(10-7)=3。解法四:延长AB,FE交于H(见右上图)。三角形BCO与三角形EFO都加上梯形BHEO,则原来的问题转化为求矩形BHEC与直角三角形BHF的面积之差。所求为4×(10-7)-(10-7)×(4+2)÷2=3。例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积分析与解:这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系。连结AD(见右上图),可以看出,三角形ABD与三角形ACD的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等。因为三角形AFD是三角形ABD与三角形ACD的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABF与三角形FCD面积仍然相等。根据等量代换,求三角形ABC的面积等于求三角形BCD的面积,等于4×4÷2=8(厘米2)。8练习:1.右上图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。2.下页左上图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF的面积大9厘米2,求ED的长。6.右上图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米2,求CD的长。影部分的面积和。9第3讲年龄问题从不变中找规律每个人的年龄年年都在增加,但人与人之间的年龄差永远不会改变,解答年龄问题一定要抓住年龄差这一不变量,从中寻找规律,解决问题。综合起来看问题年龄问题经常与和差、和倍、差倍问题等综合出现,解答时,一定要从多种角度分析,可以巧妙地将年龄问题转化成我们已学过的知识进行解答。可以利用直观图法帮助分析数量关系1、今年姐姐14岁,妹妹9岁,当姐妹二人年龄和是39岁时,妹妹多少岁?2、2007年张叔叔45岁,小明9岁。张叔叔的年龄是小明年龄的4倍时应该是那一年?3、爷爷和孙子今年的年龄和为66岁,如果再过3年后,爷爷的年龄恰好是孙子年龄的7倍,爷爷和孙子今年各多少岁?4、奶奶比孙子大60岁,奶奶与孙子的年龄和为72岁,那么再过多少年后,奶奶的年龄是孙子的7倍。5、今年爸爸和女儿的年龄之和是38岁,如果给女儿加上4岁,爸爸的年龄正好为女儿的5倍,爸爸和女儿各多少岁?106、李楠家共三口人:爸爸、妈妈和李楠,爸爸比妈妈大1岁,妈妈比李楠大25岁,又过了四年后,全家三口人的年龄和为84岁,今年李楠家的人各是多少岁?7、甲对乙说:“我今年年龄是你今年年龄的2倍。”乙对甲说:“我6年后的年龄和你10年前的年龄一样。”问甲、乙今年各是多少岁?8、今年父亲的年龄为儿子年龄的4倍,20年后父亲的年龄为儿子年龄的2倍,问今年儿子多少岁?9、爷爷和爸爸的年龄差是小明年龄的3倍,爷爷比爸爸与小明的年龄和大18岁。小明今年多少岁?10、爷爷比爸爸大26岁,妈妈比小明也大26岁。已知他们四人今年的年龄和是126岁,而5年前的年龄和为107岁。问爷爷与小明的年龄之差是多少岁?11、小军的年龄和小红现在的年龄一样时的那一年,小红8岁;小红的年龄和小军现在的年龄一样时的那一年,小军20岁。小红现在多少岁?12、1994年父与子的年龄和是36岁,2000年父亲的年龄是儿子年龄的3倍。问父亲年龄是儿子年龄两倍时是哪一年?11第8讲:分解质因数专题分析:一个自然数的因数中,为质数的因数叫做质因数。可以通过分解质因数的方法来启发我们的思维。【例1】把18个苹果平均分成若干份,每份大于1,小于18。一共有多少种不同分法?练习:1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多余15人,有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,一共有几种分发?3、甲数比乙数大9,两个数的积是792,求甲、乙两数各是多少?【例2】、写出若干个连续的自然数,使它的积是15120。练习:1、有一个长方体,它的长宽高是一个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024。问这4个孩子各是多少岁?123、四个连续的奇数的积是19305。这四个数各是多少?【例3】、将下列八个数平均分成两组,使这两组数的乘积相等。2、5、14、24、27、55、56、99练习:把40、44、45、63、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等。【例4】、王老师带领同学去植树,如果王老师和学生每人植树一样多,那么他们一共植了539棵。这个班有多少个学生?每人植树多少棵?练习:1、植树节,老师带领同学去植树,已知老师和学生每人植树的棵数相等,一共植了111棵。求有多少个同学?2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小青买的电影票是几排几号?3、把一篮苹果分给4人,使4人的苹果数一个比一个多2,且他们的苹果个数的乘积是1920。这篮苹果有多少个?13第9讲:最小公倍数专题分析:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个公倍数,叫做这几个数的最小公倍数。记住以下公式:最大公因数×最小公倍数=这两个数的积。【例1】、两个数的最大公约数是15,最小公倍数是90。求这两个数分别是多少?练习:1、两个数的最大公约数是9,最小公倍数是90。求这两个数分别是多少?2、两个数的最大公约数是12,最小公倍数是60。求这两个数的和是多少?3、两个数的和是52,它们的最大公约数是4,最小公倍数是144。求这两个数分别是多少?【例2】:甲乙丙

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功