1/24北师大版八年级上册数学第一次月考试卷一.选择题(共10小题,每小题3分)1.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)2.的平方根是()A.4B.±4C.2D.±23.已知a=,b=,则=()A.2aB.abC.a2bD.ab24.下列说法:①36的平方根是6;②±9的平方根是±3;③=±4;④0.01是0.1的平方根;⑤42的平方根是4;⑥81的算术平方根是±9.其中正确的说法是()A.0B.1C.3D.55.如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1B.2C.3D.4.86.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()2/24A.cmB.4cmC.cmD.3cm7.下列各组数中,不能作为直角三角形的三边长的是()A.0.3,0.4,0.5B.8,9,10C.7,24,25D.9,12,158.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.45mB.40mC.50mD.56m9.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.1010.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5二.填空题(共10小题,每小题3分)11.点P(3,﹣2)到y轴的距离为个单位.3/2412.已知+|2x﹣y|=0,那么x﹣y=.13.已知x=,y=,则x2+y2﹣xy的值是.14.观察下表,按你发现的规律填空a0.01211.21121121000.111.111110已知=3.873,则的值为.15.若2ax+yb5与﹣3ab2x﹣y是同类项,则2x﹣5y的立方根是.16.实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为.17.已知5+的小数部分为a,5﹣的小数部分为b,则(a+b)2017=.18.在Rt△ABC中,∠C=90°,AB=1,则AB2+BC2+AC2=.19.若直角三角形的三边分别为a、a+b、a+2b,则的值为.20.如图所示,一个圆柱体高20cm,底面半径为5cm,在圆柱体下底面的A点处有一只蚂蚁,想吃到与A点相对的上底面B处的一只已被粘住的苍蝇,这只蚂蚁从A点出发沿着圆柱形的侧面爬到B点,则最短路程是.(结果用根号表示)三.解答题(共10小题)21.计算(每小题4分)(1)2﹣﹣+(+1)2.(2)﹣×+(+)(﹣).4/2422.计算(每小题4分)(1)(2)(3+)(﹣2)+5﹣.23.(5分)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.24.(5分)已知:与互为相反数,求(x+y)2016的平方根.25.(5分)如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.5/2426.(5分)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.27.(6分)在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长.28.(7分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(3,4)、C(4,2),则点B的坐标为;(2)图中格点△ABC的面积为;(3)判断格点△ABC的形状,并说明理由.6/2429.(5分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.30.(6分)如图,在△ABC中,D为BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.7/242017年04月11日dxzxshuxue的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016春•乌拉特前旗期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.2.(2017•微山县模拟)的平方根是()A.4B.±4C.2D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.8/243.(2017•河北一模)已知a=,b=,则=()A.2aB.abC.a2bD.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.4.(2017•枝江市模拟)下列说法:①36的平方根是6;②±9的平方根是±3;③=±4;④0.01是0.1的平方根;⑤42的平方根是4;⑥81的算术平方根是±9.其中正确的说法是()A.0B.1C.3D.5【分析】依据平方根、算术平方根的定义解答即可.【解答】解:①36的平方根是±6,故①错误;②﹣9没有平方根,故②错误;③=4,故③错误;④0.1是0.01的平方根,故④错误;⑤42的平方根是±4,故⑤错误;⑥81的算术平方根是9.故⑥错误.故选:A.【点评】本题主要考查的是算术平方根和平方根的定义,掌握平方根和算术平方根的定义是解题的关键.5.(2017春•孝南区校级月考)如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1B.2C.3D.4.89/24【分析】先根据AB=8,AC=6,∠CAB=90°,利用勾股定理可求BC,再根据S△ABC=AC•AB=BC•AD,可求AD.【解答】解:如右图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,∴BC===10,又∵S△ABC=AC•AB=BC•AD,∴6×8=10AD,∴AD=4.8.故选D.【点评】本题考查了勾股定理.注意直角三角形面积的两种求法,等于两直角边乘积的一半,也等于斜边乘以斜边上高的积的一半.6.(2017春•武昌区校级月考)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm【分析】先求出SA、SB、SC的值,再根据勾股定理的几何意义求出D的面积,从而求出正方形D的边长.【解答】解:∵SA=6×6=36cm2,SB=5×5=25cm2,10/24SC=5×5=25cm2,又∵SA+SB+SC+SD=10×10,∴36+25+25+SD=100,∴SD=14,∴正方形D的边长为cm.故选:A.【点评】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.7.(2017春•广安月考)下列各组数中,不能作为直角三角形的三边长的是()A.0.3,0.4,0.5B.8,9,10C.7,24,25D.9,12,15【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、0.32+0.42=0.52,故是直角三角形,故此选项不合题意;B、82+92≠102,故不是直角三角形,故此选项符合题意;C、72+242=252,故是直角三角形,故此选项不合题意;D、92+122=152,故是直角三角形,故此选项不合题意.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.(2017春•张掖月考)如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.45mB.40mC.50mD.56m【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.11/24【解答】解:已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=32m,OB=24m,∴AB==40m.故选B.【点评】本题考查的知识点是解直角三角形的应用,正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.9.(2016•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.10【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.10.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()12/24A.B.2C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,13/24故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.二.填空题(共10小题)11.(2017春•海宁市校级月考)点P(3,﹣2)到y轴的距离为3个单位.【分析】求得3的绝对值即为点P到y轴的距离.【解答】解:∵|3|=3,∴点P(3,﹣2)到y轴的距离为3个单位,故答案为:3.【点评】本题主要考查了点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.12.(2017•沭阳县一模)已知+|2x﹣y|=0,那么x﹣y=﹣3.【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【解答】解:∵+|2x﹣y|=0,∴,解得;所以x﹣y=3﹣6=﹣3.【点评】本题考查了初中范围内的两个非负数,转化为解方程的问题,这是考试中经常出现的题目类型.13.(2017•绵阳一模)已知x=,y=,则x2+y2﹣xy的值是2.【分析】先求出x+y和xy的值,再根据完全平方公式进行变形,最后代入求出即可.【解答】解:∵x=,y=,14/24∴x+y=+=,xy=×=1,∴x2+y2﹣xy=(x+y)2﹣3xy=()2﹣3×1=2,故答案为:2.【点评】本题考查了二次根式的化简求出值,完全平方公式等知识点,能正确根据完全平方