全等三角形(ASA、AAS)ppt课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

11.2全等三角形的条件(ASA)(AAS)1.什么是全等三角形?2.我们已学了那些判定三角形全等的方法?复习三边对应相等的两个三角形全等。边边边(SSS):边角边(SAS):有两边和它们夹角对应相等的两个三角形全等。①准备条件:证全等时要用的间接条件要先证好;②三角形全等书写三步骤:写出在哪两个三角形中摆出三个条件用大括号括起来写出全等结论证明的书写步骤:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?怎么办?可以帮帮我吗?创设情景,实例引入CBEAD探究1如果两个三角形具备两角一边对应相等,有几种可能情况?1、两角夹边对应相等。2、有两个角和其中一个角的对边对应相等ABCDEF操作:画△ABC,使∠A=30°,∠B=45°,AB=5cm与同学的三角形叠合在一起,看是否能够完全重合。三角形全等判定方法3:在三角形中,如果有两个角及它们的夹边对应相等,那么这两个三角形全等(简记为ASA)。公理3(全等三角形判定3)有两个角和它们夹边对应相等的两个三角形全等用符号语言表达为:ABCDEF在△ABC与△DEF中∴△ABC≌△DEF(ASA)∠A=∠D∠B=∠EAB=DE(简写成“角边角”或“ASA”)。如图:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEF证明:∵∠A+∠B+∠C=180o∠C=180°-∠A-∠B∠D+∠E+∠F=180o∠F=180°-∠D-∠E∴∠C=∠F又∵∠A=∠D,∠B=∠E在△ABC和△DEF中∠B=∠E∠C=∠FBC=EF∴△ABC≌△DEF(ASA)有两个角和其中一个角的对边对应相等的两个三角形是否全等?有两个角和其中一个角的对边对应相等的两个三角形全等。公理3的推论ABCDEF用符号语言表达为:在△ABC和△DEF中∴△ABC≌△DEF(AAS)∠A=∠DBC=EF∠B=∠E(简写成“角角边”或“AAS”)例题讲解:例1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C。求证:BD=CEAEDCBO思考例2.如图,∠1=∠2,∠3=∠4求证:AC=AD如果把已知中的∠3=∠4改成,∠D=∠C此题又如何?OACDBAO=BO1.如图,AB、CD相交于点O,已知∠A=∠B添加条件(填一个即可)就有△AOC≌△BOD还有吗?填一填1、如图,已知∠1=∠2,∠3=∠4,BD=CE求证:AB=AC4213ABCED2、如图,AB∥CD,AD∥BC,那么AB=CD吗?为什么?AD与BC呢?ABCD12341.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长就是AB的长。为什么?ABCDEF2、如图,已知∠1=∠2∠3=∠4求证:BD=CDABCDE12341.已知:点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF,求证:DE=BFABCDEF2.如图,CD⊥AB于D,BE⊥AC与E,BE、CD交于O,且AO平分∠BAC,求证:OB=OCABCEDOABCBEADECFADFBECFBDDC已知中,于,于,且,那么与相等吗?DABCEF)(AASCDFBDE)(全等三角形对应边等CDBD∵BE⊥AD,CF⊥AD∴∠BED=∠CFD=90°证明:在△BDE与△CDF中∠BDE=∠CDF(对顶角相等)∠BED=∠CFD(已证)BE=CF(已知)OBCDBAFE练习三已知:如右图,AB、CD相交于点O,AC∥DB,OC=OD,E、F为AB上两点,且AE=BF.求证:CE=DF.证明:在AOC和BOD中,∵AC∥DB,∴∠A=∠B(两直线平等,内错角相等).又∵∠AOC=∠BOD(对顶角相等)∠A=∠B(已证),OC=OD(已知)∴AOC≌BOD(AAS)∴AC=BD在AEC和BFD中,AC=BD(已证),∠A=∠B(已证),AE=BF(已知).∴AEC≌BFD(ASA)∴CE=DF已知:ABC的顶点和DBC的顶点A和D在BC的同旁,AB=DC,AC=DB,AC和DB相交于点O.求证:OA=OD.练习一证明:在ABC和DCB中,∴∠A=∠D(全等三角形的对应角相等).AB=DC(已知),AC=DB(已知),BC=CB(公共边),∴ABC≌DCB(SSS)在AOB和DOC中,∠AOB=∠DOC(对顶角)∠A=∠D(已证)AB=DC(已知)∴AOB≌DOC(AAS)∴OA=OD.边角边公理角边角公理角角边公理课堂小结边边边公理1.你能总结出我们学过哪些判定三角形全等的方法吗?2.要根据题意选择适当的方法。3.证明线段或角相等,就是证明它们所在的两个三角形全等。探究3有两个角对应相等,以及一个三角形中两个对应角的夹边与另一个三角形中一对应角的对边对应相等的两个三角形是否全等呢?ABCD观察如图:△ABC是直角三角形,∠ACB=90o,CDAB,垂足为D。则在△ACD与△CBD中便有:∠A=∠1∠ADC=∠CDB=90oCD=CD试想△ACD与△CBD会全等吗?1两个三角形并非有两角一边对应相等便能判别它们全等,只有满足(ASA)和(AAS)才行。

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功