绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合{(,)|,,}Axyxyyx*N,{(,)|8}Bxyxy,则AB中元素的个数为A.2B.3C.4D.62.复数113i的虚部是A.310B.110C.110D.3103.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,pppp,且411iip,则下面四种情形中,对应样本的标准差最大的一组是A.14230.1,0.4ppppB.14230.4,0.1ppppC.14230.2,0.3ppppD.14230.3,0.2pppp4.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()It(t的单位:天)的Logistic模型:0.23(53)()=1etKIt,其中K为最大确诊病例数.当*()0.95ItK时,标志着已初步遏制疫情,则t*约为(ln193)A.60B.63C.66D.695.设O为坐标原点,直线x=2与抛物线C:22(0)ypxp交于D,E两点,若ODOE⊥,则C的焦点坐标为A.1(,0)4B.1(,0)2C.(1,0)D.(2,0)6.已知向量a,b满足||5a,||6b,6ab,则cos,=aabA.3135B.1935C.1735D.19357.在△ABC中,cosC=23,AC=4,BC=3,则cosB=A.19B.13C.12D.238.下图为某几何体的三视图,则该几何体的表面积是A.6+42B.4+42C.6+23D.4+239.已知2tanθ–tan(θ+π4)=7,则tanθ=A.–2B.–1C.1D.210.若直线l与曲线y=x和x2+y2=15都相切,则l的方程为A.y=2x+1B.y=2x+12C.y=12x+1D.y=12x+1211.设双曲线C:22221xyab(a0,b0)的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=A.1B.2C.4D.812.已知5584,13485.设a=log53,b=log85,c=log138,则A.abcB.bacC.bcaD.cab二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足约束条件0201xyxyx,,,则32zxy的最大值为__________.14.262()xx的展开式中常数项是__________(用数字作答).15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.16.关于函数f(x)=1sinsinxx有如下四个命题:①f(x)的图像关于y轴对称.②f(x)的图像关于原点对称.③f(x)的图像关于直线x=2对称.④f(x)的最小值为2.其中所有真命题的序号是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)设数列{an}满足a1=3,134nnaan.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次400空气质量好空气质量不好附:K2=2)nadbcabcdacbd,P(K2≥k)0.0500.0100.001k3.8416.63510.828.19.(12分)如图,在长方体1111ABCDABCD中,点,EF分别在棱11,DDBB上,且12DEED,12BFFB.(1)证明:点1C在平面AEF内;(2)若2AB,1AD,13AA,求二面角1AEFA的正弦值.20.(12分)已知椭圆222:1(05)25xyCmm的离心率为154,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线6x上,且||||BPBQ,BPBQ,求APQ△的面积.21.(12分)设函数3()fxxbxc,曲线()yfx在点(12,f(12))处的切线与y轴垂直.(1)求b.(2)若()fx有一个绝对值不大于1的零点,证明:()fx所有零点的绝对值都不大于1.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为22223xttytt(t为参数且t≠1),C与坐标轴交于A、B两点.(1)求||AB;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.23.[选修4—5:不等式选讲](10分)设a,b,c∈R,0abc,1abc.(1)证明:0abbcca;(2)用max{,,}abc表示a,b,c的最大值,证明:max{,,}abc≥34.