运动生理学笔记整理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1运动生理学绪论第一节生命的基本特征生命体的生命现象主要表现为以下五个方面的基本特征:新陈代谢、兴奋性、应激性、适应性和生殖一、新陈代谢:是生物体自我更新的最基本的生命活动过程。新陈代谢包括同化和异化两个过程。二、兴奋性:在生物体内可兴奋组织具有感受刺激、产生兴奋的特性。兴奋:可兴奋组织接受刺激后所产生的生物电反应过程及表现。三、应激性:机体或一切活体组织对周围环境变化具有发生反应的能力或特性。四、适应性:生物体所具有的这种适应环境的能力。五、生殖第二节人体生理机能的调节稳态:内环境理化性质不是绝对静止不变的,而是各种物质在不断转换中达到相对平衡状态,即动态平衡状态。这种平衡状态称为稳态。稳态是一种复杂的动态平衡过程,一方面是代谢过程使稳态不断的受到破坏,而另一方面机体又通过各种调节机制使其不断的恢复平衡。一、神经调节:是指在神经活动的直接参与下所实现的生理机能调节过程,是人体最重要的调节方式。二、体液调节:由内分泌腺分泌的化学物质,通过血液运输至靶器官,对其活动起到控制作用,这种形式的调节称为体液调节。三、自身调节:是指组织和细胞在不依赖外来的神经或体液调节情况下,自身对刺激发生的适应性反应过程。四、生物节律:生命体在维持生命活动过程中,除了需要进行神经调节、体液调节和自身调节外,各种生理功能活动会按一定的时间顺序发生周期性变化,这种生理机能活动的周期性变化,称为生物的时间结构,或称为生物节律。当前运动生理学的几个研究热点(如何用生理学观点指导运动实践)1.最大摄氧量的研究2.对氧债学说的再认识3.关于个体乳酸阈的研究4.关于运动性疲劳的研究5.关于运动对自由基代谢影响的研究6.运动对骨骼肌收缩蛋白机构和代谢的影响7.关于肌纤维类型的研究8.运动对心脏功能影响的研究9.运动与控制体重10.运动与免疫机能第一章骨骼肌的机能知识点内容:人体的肌肉分为骨骼肌、心肌和平滑肌三大类。骨骼肌的主要活动形式是收缩和舒张。通过舒缩活动完成运动、动作,维持身体姿势。骨骼肌的活动是在神经系统的调节支配下,在机体各器官系统的协调活动下完成的。第一节肌纤维的结构一、肌肉的基本结构和功能单位:1.肌细胞即肌纤维,是肌肉的基本结构和功能单位。2.肌纤维(肌内膜)集中形成肌束(肌束膜),肌束集中形成肌肉(肌外膜)。3.肌纤维直径60微米,长度数毫米——数十厘米。4.肌肉两端为肌腱,跨关节附骨。2(1)肌原纤维和肌小节(肌细胞的结构)肌原纤维(A、I带,H区,M线,Z线与粗、细肌丝的排列关系,粗细肌丝的空间排列规则等)图P19肌小节:两条Z线之间的结构,肌细胞最基本的结构和功能单位。二、肌管系统肌原纤维间的小管系统。横小管:肌细胞膜延伸入肌细胞内部的小管,与肌纤维走向垂直。纵小管:围绕肌纤维形成网状,与肌纤维走向平行,又称肌质网在横管处膨大,形成终池,内贮钙离子。三联管:两侧终池与横管合称。互不相通。三、肌丝分子的组成肌丝分为粗、细肌丝,为肌细胞收缩的物质基础。肌丝主要由蛋白质组成,与收缩有关的蛋白质(50%——60%/肌肉蛋白)是:肌凝(球)蛋白、肌纤(动)蛋白、原肌凝蛋白、肌钙(原宁)蛋白等。第二节骨骼肌细胞的生物电现象可兴奋组织的生物电现象是组织兴奋的本质活动。生物电活动包括静息电位活动和动作电位活动,前者是后者的基础。1.静息电位概念:静息电位是指细胞处于安静状态时细胞膜内外所存在的电位差。产生原理:膜内钾离子多于膜外,在静息膜钾通道开放时由膜内向膜外运动,达到钾的平衡电位,形成膜外为正膜内为负的极化状态。2.动作电位概念:动作电位是指可兴奋细胞受到刺激时,膜电位发生的扩布性变化。产生原理:膜外钠离子多于膜内,在受刺激时膜钠通道开放,钠由膜外向膜内运动,达到钠的平衡电位,在此过程中,经过去极化形成膜外为负膜内为正的反极化(锋电位,绝对不应期)状态,继而复极化(后电位,相对不应期、超常期),恢复到极化状态。特点:全或无现象,不衰减性传导,脉冲式传导3.动作电位的传导神经纤维局部电流环路方式双向传导;有髓鞘神经呈跳跃式传导,速度快;无髓鞘神经传导速度慢。4.细胞间的兴奋传递包括神经之间的兴奋传递;神经细胞与肌肉细胞之间的兴奋传递两种情况。神经肌肉接头的结构运动终板:终板前膜(介质)、终板后膜(受体)、终板间隙(酶)神经——肌肉接头的兴奋传递①当动作电位延神经纤维传到轴突末梢时,引起轴突末梢处的接头前膜上的钙离子通道开放,钙离子从细胞外液进入轴突末梢,促使轴浆中含有乙酰胆碱的突触小泡向接头前膜移动。②当突触小泡到达接头前膜后,突出小泡膜与接头前膜融合进而破裂,将乙酰胆碱释放到接头间隙。③乙酰胆碱通过接头间隙到达接头后膜后和接头后膜上的乙酰胆碱受体结合,因其接头后膜上的钠、钾离子通道开放,使钠离子内流、钾离子外流,结果使接头后膜处的膜电位幅度减小,即去极化。(这一电位变化称为终板电位。)④当终板电位达到一定幅度时,可引发肌细胞膜产生动作电位,从而使骨骼肌细胞产生兴奋。5.肌电肌电:骨骼肌在兴奋时,会由于肌纤维动作电位的传导和扩布而发生电位变化,这种电位变化称为肌电。肌电图:用适当的方法将骨骼肌兴奋时发生的电位变化引导、放大并记录所得到的图形,称为肌电图。采用肌电信号的电极有两种:一种是针电极,另一种是表面电极。在体育科学研究中,一般采用表面电极采集肌电信号。3第三节肌纤维的收缩过程一、肌丝滑行学说概念:在调节因素的作用下,肌小节中的细肌丝在粗肌丝的带动下向A带中央滑行,使肌小节长度变短,导致肌原纤维肌纤维以致整块肌肉的收缩。二、肌纤维收缩的分子机制运动神经冲动(动作电位)→神经末梢→神经-肌肉接头兴奋传递→肌膜兴奋→横管膜兴奋→三联管兴奋→终池(纵管、肌质网)释钙→肌钙蛋白亚单位C+钙→肌钙蛋白分子构型变化→原肌球蛋白变构移位→肌动蛋白结合位点暴露+粗肌丝横桥→ATP酶激活→ATP分解供能→横桥摆动→细肌丝向H区滑行(多次)→肌小节缩短→肌肉收缩肌肉收缩时形成的横桥联系数目越多,肌肉收缩的力量也就越大。肌肉收缩时:肌浆中钙↑→肌质网钙泵激活→钙进入肌浆网→肌浆中钙浓度↓→钙与肌钙蛋白分离→肌钙蛋白与原肌球蛋白构型恢复→掩盖肌动蛋白结合位点→横桥活动停止→细肌丝回位→肌肉舒张。三、肌纤维的兴奋-收缩耦联(P33)概念:联系肌细胞膜兴奋(生物电变化)与肌丝滑行(机械收缩)过程的中介过程。钙离子是重要的沟通物质。步骤:1.兴奋通过横小管系统传到肌细胞内部:横小管是肌细胞膜的延续,动作电位可沿着肌细胞膜传导到横小管,并深入到三联管结构。2.三联管处钙离子释放并与肌钙蛋白结合引起肌丝滑行:横小管膜上的动作电位可引起与其邻近的终末池膜及肌质网膜上的大量钙离子通道开放,钙离子顺着浓度梯度从肌质网内流入胞浆,肌浆中钙离子浓度升高后,钙离子与肌钙蛋白亚单位C结合时,导致一系列蛋白质的结构发生改变,最终导致肌丝滑行。3.肌质网对钙再回收:肌质网膜上存在的钙泵,当肌浆中的钙浓度升高时,钙泵将肌浆中的钙逆浓度梯度转运到肌质网中贮存,从而使肌浆钙浓度保持较低水平,由于肌浆中的钙浓度降低,钙与肌钙蛋白亚单位C分离,最终引起肌肉舒张。第四节骨骼肌特性一、骨骼肌的物理特性(伸展性、弹性、粘滞性)骨骼肌为粘弹性体。伸展性:骨骼肌在受到外力牵拉或负重时可被拉长的特性。(体操、投掷提重物等,地心引力——走、跑、跳)弹性:外力或负重取消后,肌肉长度可恢复的特性。粘滞性:肌浆内各物质分子的运动摩擦力,造成骨骼肌(肌小节)伸展或恢复的阻力。影响因素:温度。温度↓→粘滞性↑→活动不易;温度↑→粘滞性↓→活动容易准备活动降低粘滞性,否则易拉伤。二、骨骼肌的生理特性及兴奋条件(生理特性:兴奋性、收缩性)要引起骨骼肌兴奋必须具备必要的条件:刺激强度、刺激作用时间、刺激强度变化率。刺激强度:阈刺激:即引起肌肉兴奋的最小刺激。因肌而异,与肌肉的训练程度有关,阈上刺激>阈刺激,阈下刺激<阈刺激。阈刺激为评定组织兴奋性的指标。阈刺激大说明组织兴奋性低,阈刺激小,说明组织兴奋性高。肌肉训练程度愈高,兴奋性愈高,则所需阈强度愈小。(举例:A肌:0.3毫伏B肌:0.1毫伏,B兴奋性高于A。)阈刺激与肌力的关系:在整体中,阈下刺激不能引起单个肌肉收缩;只有阈刺激以上的刺激强度才能引起肌纤维收缩。4在一块肌肉中,每条肌纤维的兴奋性是不同的,阈刺激以上的刺激量小则兴奋性最高的肌纤维收缩,随着刺激量的增大,越来越多的肌纤维参加收缩,肌力也越来越大,当刺激强度达到最适宜状态时,肌肉可产生最大收缩。(一定范围内刺激增大)刺激作用时间:兴奋的必需条件之一。在一定范围内,作用时间与刺激强度成反比。时值:用2倍的基强度刺激组织,引起组织兴奋所需的最短时间。时值愈小则组织兴奋性愈高。(肱二头肌时值:一般人:0.058毫秒;二级举重运动员:0.051毫秒;举重运动健将:0.047毫秒)刺激强度变化率:是指刺激电流从无到有,从小变大的变化速率(通电、断电瞬间可引起组织兴奋)。第五节骨骼肌收缩一、骨骼肌的收缩形式肌肉收缩时,可表现为肌丝滑动引起的肌小节缩短,也可表现为无肌小节缩短的肌肉张力增加。根据肌肉收缩时的长度和张力变化,肌肉收缩可分为4种类型:向心(等张)收缩、等长(静力)收缩、离心收缩、等动(等速)收缩。(一)向心(等张)收缩:概念:肌肉收缩时,长度缩短的收缩称为向心收缩。特点:张力增加在前,长度缩短在后;缩短开始后,张力不再增加,直到收缩结束。是动力性运动的主要收缩形式。等张收缩的情况下肌肉作功。功=负荷重量*负荷移动距离的乘积。顶点:在负荷不变的情况下,在整个关节活动的范围内,肌肉收缩的用力程度随关节角度的变化(力矩)而不同。在此范围内,肌肉用力最大的一点为顶点。顶点状态下肌肉收缩的杠杆效率最差,故此时肌肉可达到最大收缩。等张训练不利于发展整个关节范围内任何一个角度的肌肉力量。例:杠铃举起后;跑步;提重物等。(二)等长收缩概念:肌肉收缩时张力增加长度不变。即静力性收缩,此时不做机械功。(不推动物体,不提起物体)特点:超负荷运动;与其他关节的肌肉离心收缩和向心收缩同时发生,以保持一定的体位,为其他关节的运动创造条件。例:蹲起、蹲下(肩带、躯干;腿部、臀部);体操十字支撑、直角支撑;武术站桩等。(三)离心收缩概念:肌肉在产生张力的同时被拉长。特点:控制重力对人体的作用——退让工作;制动——防止运动损伤。例:下蹲——股四头肌;搬运放下重物——上臂、前臂肌;高处跳下——股四头肌、臀大肌(四)等动收缩概念:在整个肌肉活动的范围内,肌肉以恒定的速度、始终与阻力相等的力量收缩。特点:收缩过程中收缩力量恒定;肌肉在整个运动范围内均可产生最大张力;为提高肌肉力量的有效手段。需配备等动练习器。例:自由泳划水(五)骨骼肌不同收缩形式的比较(习题集10,P27)1.力量:离心收缩可产生最大的张力。离心收缩产生的力量比向心收缩大50%,比等长收缩大25%左右。离心收缩产生最大张力原因:①牵张反射,肌肉受到外力的牵张时会反射性的引起收缩。②离心收缩时肌肉弹性成分被拉长而产生阻力,同时肌肉中的可收缩成分也产生最大阻力F离心收缩=F收缩张力+F弹性阻力+F收缩成分阻力向心收缩:F表现张力=F肌肉收缩产生张力-F克服弹性阻力的张力。因此,表现出的张力<实际肌肉收缩产生的张力2.肌电:在等速向心收缩和离心收缩时,在一定范围内,积分肌电(IEMG)与肌肉张力成正比。在负荷相同的情况下,离心收缩的积分肌电(IEMG)较向心收缩低3.代谢:离心收缩耗能低、耗氧量也低,各项生理指标反应均低于向心收缩。54.肌肉酸痛:离心收缩﹥等长收缩﹥向心收缩二、骨骼肌收缩的力学表现(一)绝对力量与相对力量绝对肌力:某一块肌肉做最大收缩时所产生的张力。相对肌力:肌肉单位横断面积(一般为1CM2肌肉横断面积)所具有的肌力。肌肉横断面的大小有取决于组成该肌肉的肌纤维数量和每条肌纤维的粗细。(二)肌肉力量与运动1、肌肉收缩时产生的张力大小,取决于活化的横桥数目;而收缩速度则取决于能量释放速率和肌球蛋白ATP酶活性,与活化的横桥数目无关。2、肌肉力量与运动速度:在负荷相同的条件下,力

1 / 66
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功