1陕西中考数学历年压轴题1、(15)如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由。22、(14)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E,F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°。求此时BQ的长;问题解决(3)有一山庄,它的平面为③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳。已知∠A=∠E=∠D=90°。AB=270m。AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长;若不存在,请说明理由。┓①②③CAABDABCFEDCAABEDA33、(13)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点.如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.(第25题图)①②③44、(12)如图,正三角形ABC的边长为3+3.(1)如图①,正方形EFPN的顶点EF、在边AB上,顶点N在边AC上.在正三角形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形''''EFPN,且使正方形''''EFPN的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DEEF、在边AB上,点PN、分别在边CBCA、上,求这两个正方形面积和的最大值及最小值,并说明理由.55、(2011)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个等腰三角形(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?66、(2010)问题探究(1)请你在图①中做一条..直线,使它将矩形ABCD分成面积相等的两部分;(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。问题解决(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的了部分,你认为直线l是否存在?若存在求出直线l的表达式;若不存在,请说明理由77、(2009)问题探究(1)请在图①的正方形ABCD内,画出使90APB°的一个..点P,并说明理由.(2)请在图②的正方形ABCD内(含边),画出使60APB°的所有..的点P,并说明理由.问题解决(3)如图③,现在一块矩形钢板43ABCDABBC,,.工人师傅想用它裁出两块全等的、面积最大的APB△和CPD△钢板,且60APBCPD°.请你在图③中画出符合要求的点P和P,并求出APB△的面积(结果保留根号).DCBA①DCBA③DCBA②(第25题图)88、(2008)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学。点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的23km处。为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值。综上,你认为把供水站建在何处,所需铺设的管道最短?北东D30°ABCMOEF图①乙村D30°ABCMOEF图②乙村99、(2007)如图,O的半径均为R.(1)请在图①中画出弦ABCD,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦ABCD,,使图②仍为中心对称图形;(2)如图③,在O中,(02)ABCDmmR,且AB与CD交于点E,夹角为锐角.求四边形ACBD面积(用含m,的式子表示);(3)若线段ABCD,是O的两条弦,且2ABCDR,你认为在以点ABCD,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.10、(2006)王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm下底为120cm,高为60cm的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点。(1)求FC的长;(2)利用图②求出矩形顶点B所对的顶点.....到BC边的距离)(cmx为多少时,矩形的面积最大?最大面积时多少?(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。OOOAECBO(第25题图①)(第25题图②)(第25题图③)(第25题图④)D