《天线与电波传播》8/13/20201Dept.PEEHefeiNormalUniversity张忠祥8/13/20202Dept.PEEHefeiNormalUniversity教材:《天线与电波传播》王增和卢春兰钱祖平等编著机械工业出版社参考书:《天线原理》2003年7月第一版主编:江贤祚出版社:北京航空航天大学出版社《Antennas:ForAllApplications》1993年第一版主编:JohnD.Kraus出版社:theMcGraw-HillCompanies出版时间:2002《天线》编著:[美]JohnD.KrausRonaldJ.Marhefka出版社:电子工业出版社2004年4月第一版《RadioPropagationforModernWirelessSystems》编著:[美]JohnD.Kraus出版社:电子工业出版社RonaldJ.Marhefka2002年8月第一版天线与电波传播8/13/2020Dept.PEEHefeiNormalUniversity3第1章天线基础知识第2章窄带天线第3章宽带天线第4章口径天线第5章天线新技术第6章电波传播概论8/13/2020Dept.PEEHefeiNormalUniversity42窄带天线概述什么是窄带天线?窄带天线,也称为谐振天线;窄带天线,其工作频带较窄,非宽频带工作;其天线的尺寸接近于工作波长的整数倍或者半波长的整数倍,所以常被称为“谐振天线”;谐振天线,其电特性对频率或波长的变化很敏感;线天线不一定就是窄频带天线,且窄频带的天线也不一定就是线天线。8/13/2020Dept.PEEHefeiNormalUniversity5天线场的求解天线上的电流分布决定了其辐射场,确定电流分布是从理论上研究线天线的电特性(方向图、阻抗)的第一步---最困难的一步;电流分布不仅确定辐射场且也确定了近区场,而近区场也反过来制约着电流分布,(线天线的电流分布是一个复杂的电磁场边值问题);工程中常采用数值法或者近似解法求解。8/13/2020Dept.PEEHefeiNormalUniversity62.1双极天线双极天线,也被称为偶极天线、振子天线;第一章中的短振子和半波天线是双极天线的特例;双极天线,对振子长度、振子间的张角为任意值;双极天线,电流近似呈正弦分布,(对于细导线,其末端的孤立电容效应忽略不计),从馈电点发出的电流沿振子传播到末端时必然要完全反射回来,可视为终端开路的平行双导线。8/13/2020Dept.PEEHefeiNormalUniversity78/13/2020Dept.PEEHefeiNormalUniversity88/13/2020Dept.PEEHefeiNormalUniversity98/13/2020Dept.PEEHefeiNormalUniversity108/13/2020Dept.PEEHefeiNormalUniversity118/13/2020Dept.PEEHefeiNormalUniversity128/13/2020Dept.PEEHefeiNormalUniversity13P.104对称振子E面方向图(l=h)30°210°60°240°90°270°120°300°150°330°180°0°30°210°60°240°90°270°120°300°150°330°180°0°30°210°60°240°90°270°120°300°150°330°180°0°l=0.1l=0.25l=0.6530°210°60°240°90°270°120°300°150°330°180°0°30°210°60°240°90°270°120°300°150°330°180°0°30°210°60°240°90°270°120°300°150°330°180°0°l=0.75l=1l=1.58/13/202014Dept.PEEHefeiNormalUniversity8/13/2020Dept.PEEHefeiNormalUniversity158/13/2020Dept.PEEHefeiNormalUniversity168/13/2020Dept.PEEHefeiNormalUniversity178/13/2020Dept.PEEHefeiNormalUniversity188/13/2020Dept.PEEHefeiNormalUniversity192-18/13/2020Dept.PEEHefeiNormalUniversity208/13/2020Dept.PEEHefeiNormalUniversity218/13/2020Dept.PEEHefeiNormalUniversity228/13/2020Dept.PEEHefeiNormalUniversity238/13/2020Dept.PEEHefeiNormalUniversity248/13/2020Dept.PEEHefeiNormalUniversity258/13/2020Dept.PEEHefeiNormalUniversity268/13/2020Dept.PEEHefeiNormalUniversity278/13/2020Dept.PEEHefeiNormalUniversity288/13/2020Dept.PEEHefeiNormalUniversity294:h/a=103:h/a=202:h/a=401:h/a=608/13/2020Dept.PEEHefeiNormalUniversity308/13/2020Dept.PEEHefeiNormalUniversity318/13/2020Dept.PEEHefeiNormalUniversity328/13/2020Dept.PEEHefeiNormalUniversity338/13/2020Dept.PEEHefeiNormalUniversity34-8/13/2020Dept.PEEHefeiNormalUniversity358/13/2020Dept.PEEHefeiNormalUniversity368/13/2020Dept.PEEHefeiNormalUniversity378/13/2020Dept.PEEHefeiNormalUniversity388/13/2020Dept.PEEHefeiNormalUniversity398/13/2020Dept.PEEHefeiNormalUniversity408/13/2020Dept.PEEHefeiNormalUniversity418/13/2020Dept.PEEHefeiNormalUniversity428/13/2020Dept.PEEHefeiNormalUniversity43—8/13/2020Dept.PEEHefeiNormalUniversity448/13/2020Dept.PEEHefeiNormalUniversity452.1.3V形振子天线8/13/2020Dept.PEEHefeiNormalUniversity46V形振子天线,其张开角度180°;V形振子天线,其最大辐射方向沿张角的角平分线方向;其振子两臂所确定平面为E面,沿最大辐射方向与E面垂直平面为H面(H面也不是圆了);V形振子天线,其方向系数要大于同等长度的对称振子天线,副瓣电平低于对应的对称振子天线;V形振子天线,其输入阻抗较对应的对称振子要低,其也存在着谐振长度缩短现象。8/13/2020Dept.PEEHefeiNormalUniversity472.1.4折合振子天线D2l(a)(b)2l2a22a1D~~半波折合振子的电流分布ab/2/2abIM2IM1折合振子的两个端点为电流节点,导线上电流同相,当Dλ时,折合振子相当于一电流为IM=IM1+IM2的半波振子,故方向图将和半波振子的一样。8/13/202048Dept.PEEHefeiNormalUniversity8/13/2020Dept.PEEHefeiNormalUniversity49在短波、超短波波段,半波对称振子获得广泛的应用,但其输入阻抗只有73Ω,有时候嫌它太低,因为平行双导线其特性阻抗为300Ω;折合振子,它有两根平行的对称振子末端相连形成的窄环天线,其间距远小于振子长度和波长,馈电点在一边的中心;为什么半波折合振子能够具有较高的输入电阻呢?这与它的特殊结构有关。对于等粗细的半波折合振子IM1=IM2,折合振子相当于具有波腹电流IM=IM1+IM2=2IM1的一个等效半波振子。因此,不仅它的方向性与半波振子的相同,而且它的辐射功率也可以写成:212rMrPIR(2―4―1)8/13/202050Dept.PEEHefeiNormalUniversity其中,Rr为以波腹电流计算的辐射电阻,也刚好是等效半波振子的输入电阻,一般约为70Ω。对于半波折合振子来说,馈电点的输入电流实际上为IM1,而不是IM,所以它的输入功率为:2112inMinPIR(2―4―2)8/13/202051Dept.PEEHefeiNormalUniversity由于天线的效率η=1,半波折合振子的输入功率Pin等于它的辐射功率Pr,令式(2-4-1)与(2-4-2)相等,214MinrMinrIPRIRR计及IM=2IM1,则(2―4―3)(2―4―4)8/13/202052Dept.PEEHefeiNormalUniversity即等粗细半波折合振子的输入电阻等于普通半波振子输入电阻的4倍。因此折合振子具有高输入电阻的突出特点。实际工作中不一定刚好要求半波折合振子的输入电阻是半波振子的4倍,这时可以采用前图所示的不等粗细折合振子,此时半波折合振子的输入电阻与半波振子输入电阻之间满足以下关系:212ln1lninrrDaRRKRDa(2―4―5)8/13/202053Dept.PEEHefeiNormalUniversity由式(2-4-5)可知:当a1=a2时,当a1a2时,当a1a2时,121212lnln,4lnln,4lnln,4DDKaaDDKaaDDKaa8/13/202054Dept.PEEHefeiNormalUniversityD2l(a)(b)2l2a22a1D~~8/13/2020Dept.PEEHefeiNormalUniversity552.2八木-宇田天线8/13/2020Dept.PEEHefeiNormalUniversity56首先研究八木天线的是日本仙台东北大学的宇田(Uda),于1926年和1927年在日本发表了其研究成果;1928年,宇田的导师八木(H.Yagi)教授在英国写了一篇关于宇田研究成果的综述;八木天线,又叫YagiAntenna,或者引向天线;8/13/2020Dept.PEEHefeiNormalUniversity578/13/2020Dept.PEEHefeiNormalUniversity588/13/2020Dept.PEEHefeiNormalUniversity598/13/2020Dept.PEEHefeiNormalUniversity608/13/2020Dept.PEEHefeiNormalUniversity618/13/2020Dept.PEEHefeiNormalUniversity62(2)自阻抗和互阻抗的计算常采用感应电动势法来计算。当空间中只有单振子存在时,一般其上电流为近似的正弦分布;当附近有其他振子存在时,其上电流分布将会发生改变,但理论计算和实验均表明,细耦合振子上的电流分布仍和正弦分布相差不大,因此工程计算中,将耦合振子的电流分布仍看作是正弦分布。8/13/2020Dept.PEEHefeiNo