第1页共15页高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)确定性如:世界上最高的山(2)互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N*或N+,整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-32},{x|x-32}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集:含有有限个元素的集合注意:{Φ}不是空集,而是含有元素Φ的一个集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合。只有一种表示方法,即Φ例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”第2页共15页即:①任何一个集合是它本身的子集。AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)③如果AB,BC,那么AC④如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集,2n-2个非空真子集。三、集合的运算运算类型交集(相同的部分)并集(两者之和)补集(剩余的部分)定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即CSA=},|{AxSxx且韦恩图示AB图1AB图2SASA第3页共15页性质AA=AAΦ=ΦAB=BAABAABBAA=AAΦ=AAB=BAABAABB(CuA)(CuB)=Cu(AB)(CuA)(CuB)=Cu(AB)A(CuA)=UA(CuA)=Φ.例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.4.设集合A=12xx,B=xxa,若AB,则a的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M={(x,y)|(0≤x≤5/2∩0≤y≤3/2)∪(-2≤x≤0∩-1≤y≤0)}7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值解:可求得A={-4,2}B={2,3}若B∩C≠Φ,A∩C=Φ则3∈C且2、-4均不属于C将x=3代入C9-3m+m²-19=0解得m=5或-2①若m=5则C={x|x²-5x+6=0}={2,3}所以m=5不成立舍去第4页共15页若m=-2则C={x|x²+2x-15=0}={-5,3}所以m=-2也成立综上所述m=-2二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;例a/b,则b≠0(2)偶次方根的被开方数不小于零;例n√x,则当n为偶数时,x≧0(3)对数式的真数必须大于零;例㏒ab,则b0(4)指数、对数式的底必须大于零且不等于1.例ab,㏒ab,则a0且a≠1(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.例(x2+3)/(x2-3x+1),则x2-3x+1≠0(6)指数为零,底不可以等于零。例ab,则当a=0时,b不能为0(7)实际问题中的函数的定义域还要保证实际问题有意义.2.值域:先考虑其定义域(1)观察法:f(x)=x1,值域为{y|y≠0}(2)配方法:①f(x)=x2+6x+12使用配方法即f(x)=(x+3)2+3值域为[3,+∞)②f(x)=4x-6·2x-5=(2x-3)2-14值域为[-14,+∞)(3)代换法:①f(x)=x+√1-x,令t=√1-x,则x=1-t2,第5页共15页f(x)=1-t2+t=—2)21(t)+45,值域为(—∞,45]。②f(x)=x√1-x2+x2,则-1≤x≤1,令x=sinα(|α|≤2),则f(x)=sinαcosα+sin2α=21sin2α+21(1-cos2α)=21+22√sin(4-2)∈{22-1,221补充:Ⅰ、函数三要素:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。Ⅱ、相同函数的判断方法:(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致(两点必须同时具备)Ⅲ、值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}。图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。图象变换法:(请参考必修4三角函数)常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念第6页共15页(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.常用的函数表示法及各自的优点:○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2解析法:必须注明函数的定义域;○3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4列表法:选取的自变量要有代表性,应能反映定义域的特征.注意:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值7、分段函数课本P24-25(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.在不同的定义域里求函数值时必须把自变量代入相应的表达式。(3)分段函数是一个函数,不要把它误认为是几个函数,分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为F(x)为复合函数。例如:y=2cos(x2+1)可以看成是函数g(x)=x2+1和f(x)=2cosx组成的复合函数。复合函数单调性判断:同增异减。二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的第7页共15页某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:(最常用)○1任取x1,x2∈D,且x1x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”例如:f=xx2231)((x≧0),其中u=x2x2为在[0,+∞)为增函数,f(x)=x31)(在[0,+∞)为减函数,则f=xx2231)(在[0,+∞)为减函数。注意:复合函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数的奇偶性(整体性质)注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有第8页共15页f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.判断函数是否为奇函数或者偶函数注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,再判断(1)利用定义判断函数奇偶性的步骤:○1首先确定函数的