1920版第1章16三角函数模型的简单应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

11.6三角函数模型的简单应用1.电流I(A)随时间t(s)变化的关系是I=2sin100πt,t∈(0,+∞),则电流I变化的周期是()A.1100B.100C.150D.502.如图所示,一个单摆以OA为始边,OB为终边的角θ(-π<θ<π)与时间t(s)满足函数关系式θ=12sin2t+π2,则当t=0时,角θ的大小及单摆频率是()A.12,1πB.2,1πC.12,πD.2,π3.如图为某简谐运动的图象,则这个简谐运动需要________s往返一次.4.如图所示的图象显示的是相对于平均海平面的某海湾的水面高度y(m)在某天24h内的变化情况,则水面高度y关于从夜间0时开始的时间x的函数关系式为________________.三角函数图象的应用【例1】(1)函数y=x+sin|x|,x∈[-π,π]的大致图象是()2ABCD(2)作出函数y=|cosx|的图象,判断其奇偶性、周期性并写出单调区间.1.函数y=lncosx-π2<x<π2的大致图象是()三角函数模型在物理学中的应用【例2】已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s(cm)随时间t(s)的变化规律为s=4sin2t+π3,t∈[0,+∞).(1)用“五点法”作出这个函数的简图;(2)小球在开始振动(t=0)时的位移是多少?(3)小球上升到最高点和下降到最低点时的位移分别是多少?(4)经过多长时间小球往复振动一次?2.单摆从某点开始来回摆动,离开平衡位置的距离s(单位:cm)和时间t(单位:s)的函数关系式为s=6sin2πt+π6.(1)当单摆开始摆动(t=0)时,离开平衡位置的距离是多少?(2)当单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需多长时间?三角函数模型的实际应用[探究问题]3在处理曲线拟合和预测的问题时,通常需要几个步骤?【例3】已知某海滨浴场的海浪高度y(m)是时间t(h)的函数,其中0≤t≤24,记y=f(t),下表是某日各时的浪高数据:t03691215182124y1.51.00.51.01.510.50.991.5经长期观测,y=f(t)的图象可近似地看成是函数y=Acosωt+b的图象.(1)根据以上数据,求其最小正周期,振幅及函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?1.若将本例(2)中“大于1m”改为“大于1.25m”,结果又如何?2.若本例中海滨浴场某区域的水深y(m)与时间t(h)的数据如下表:t(h)03691215182124y(m)10.013.09.97.010.013.010.17.010.0用y=Asinωt+b刻画水深与时间的对应关系,试求此函数解析式.1.与图中曲线对应的函数解析式是()A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx|2.某人的血压满足函数式f(t)=24sin160πt+110,其中f(t)为血压,t为时间,则此人每分钟心跳的次数为()A.60B.70C.80D.903.一根长lcm的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s(cm)与时间t(s)的函数关系式为s=3cosglt+π3,其中g是重力加速度,当小球摆动的周期是1s时,线长l=________cm.4.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在4此两值之间依正弦型曲线变化.(1)求出动物种群数量y关于时间t的函数表达式;(其中t以年初以来的月为计量单位)(2)估计当年3月1日动物种群数量.课时分层作业(十三)(建议用时:45分钟)[基础达标练]一、选择题1.如图,单摆从某点开始来回摆动,离开平衡位置O的距离s(cm)和时间t(s)的函数关系式为s=6sin2πt+π6,那么单摆摆动一个周期所需的时间为()A.2πsB.πsC.0.5sD.1s2.已知函数y=sinax+b(a>0)的图象如图所示,则函数y=loga(x+b)的图象可能是()ABCD3.如图,为一半径为3m的水轮,水轮圆心O距离水面2m,已知水轮自点A开始1min旋转4圈,水轮上的点P到水面距离y(m)与时间x(s)满足函数关系y=Asin(ωx+φ)+2,则有()5A.ω=2π15,A=3B.ω=152π,A=3C.ω=2π15,A=5D.ω=152π,A=54.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+bA>0,ω>0,|φ|<π2的模型波动(x为月份),已知3月份达到最高价9千元,7月价价格最低为5千元,根据以上条件可确定f(x)的解析式为()A.f(x)=2sinπ4x-π4+7(1≤x≤12,x∈N*)B.f(x)=9sinπ4x-π4(1≤x≤12,x∈N*)C.f(x)=22sinπ4x+7(1≤x≤12,x∈N*)D.f(x)=2sinπ4x+π4+7(1≤x≤12,x∈N*)5.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12s旋转一周.已知时间t=0时,点A的坐标是12,32,则当0≤t≤12时,动点A的纵坐标y关于t(单位:s)的函数的单调递增区间是()A.[0,1]B.[1,7]C.[7,12]D.[0,1]和[7,12]二、填空题6.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y=a+Acosπ6(x-6)(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃.7.如图是一弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振动的位移,则这个振子振动的函数解析式是________.68.一种波的波形为函数y=-sinπ2x的图象,若其在区间[0,t]上至少有2个波峰(图象的最高点),则正整数t的最小值是________.三、解答题9.心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80mmHg为标准值.设某人的血压满足函数式p(t)=115+25sin160πt,其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)画出函数p(t)的草图;(4)求出此人的血压在血压计上的读数.[能力提升练]1.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F(t)=50+4sint2(0≤t≤20)给出,F(t)的单位是辆/分,t的单位是分,则下列哪个时间段内车流量是增加的()A.[0,5]B.[5,10]C.[10,15]D.[15,20]2.国际油价在某一时间内呈现正弦波动规律:P=Asinωπt+π4+60(单位:美元,t/天,A>0,ω>0),现采集到下列信息:最高油价80美元,当t=150(天)时达到最低油价,则ω的最小值为________.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功