1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征学习目标核心素养1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.(重点)2.理解棱柱、棱锥、棱台之间的关系.(难点)3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.(易混点)通过对空间几何体概念的学习,培养直观想象、逻辑推理的数学素养.1.空间几何体类别定义图示多面体由若干个平面多边形围成的空间几何体叫做多面体旋转体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,其中定直线叫做旋转体的轴2.棱柱、棱锥、棱台的结构特征(1)棱柱的结构特征定义有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的多面体叫做棱柱图示及相关概念底面:两个互相平行的面.侧面:底面以外的其余各面.侧棱:相邻侧面的公共边.顶点:侧面与底面的公共顶点分类按底面多边形的边数分:三棱柱、四棱柱、…思考:棱柱的侧面一定是平行四边形吗?(2)棱锥的结构特征定义有一面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的多面体叫做棱锥图示及相关概念底面:多边形面.侧面:有公共顶点的三角形面.侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点分类按底面多边形的边数分:三棱锥、四棱锥、…思考:有一个面是多边形,其余各面是三角形的几何体一定是棱锥吗?(3)棱台的结构特征定义用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台图示及相关概念上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:除上下底面以外的面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点分类由几棱锥截得,如三棱台、四棱台、…思考:棱台的上下底面互相平行,各侧棱延长线一定相交于一点吗?1.在三棱锥ABCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个2.下面说法中,正确的是()A.上下两个底面平行且是相似的四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形3.下面属于多面体的是________(填序号).①建筑用的方砖;②埃及的金字塔;③茶杯;④球.棱柱的结构特征【例1】(1)下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,但底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形①②③(2)如图所示,长方体ABCDA1B1C1D1.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?若是,请指出它们的底面.有关棱柱结构特征问题的解题策略:(1)有关棱柱概念辨析问题应紧扣棱柱定义:①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个面平行,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.1.下列关于棱柱的说法错误..的是()A.所有棱柱的两个底面都平行B.所有的棱柱一定有两个面互相平行,其余每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面棱锥、棱台的结构特征【例2】(1)下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②棱锥的侧面只能是三角形;③由四个面围成的封闭图形只能是三棱锥;④棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.](2)判断如图所示的几何体是不是棱台,为什么?棱锥、棱台结构特征题目的判断方法:(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点2.如图所示,观察以下四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱多面体的表面展开图[探究问题]1.棱柱的侧面展开图是什么图形?正方体的表面展开图又是怎样的?2.棱台的侧面展开图又是什么样的?【例3】(1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)()(2)如图是三个几何体的平面展开图,请问各是什么几何体?1.将本例(1)中改为:水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.6C.快D.乐2.将本例(2)的条件改为:一个几何体的平面展开图如图所示.(1)该几何体是哪种几何体?(2)该几何体中与“祝”字面相对的是哪个面?“你”字面相对的是哪个面?1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个2.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥3.下列图形经过折叠可以围成一个棱柱的是()ABCD4.一个棱柱至少有________个面,顶点最少的一个棱台有________条侧棱.课时分层作业(一)棱柱、棱锥、棱台的结构特征[基础达标练]一、选择题1.观察如下所示的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台2.下列说法正确的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形①②3.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()①②③④A.①②B.②③C.③④D.①④4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定5.用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形①②二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60cm,则每条侧棱长为________cm.7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?10.试从正方体ABCDA1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.①②③[能力提升练]1.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.