分子模拟与分子动力学简介什么是分子模拟什么是分子模拟分子模拟是在分子模型的基础上用计算机做实验,“计算机实验”通过模拟微观粒子的运动来计算宏观性质温度压力黏度传递性质表面张力....分子间的作用模型牛顿力学量子力学统计力学等分子模拟的双重性质分子模拟具有理论和实验的双重性质分子模拟不能完全取代实验理论实验模拟理论的正确性模拟参数的正确性模拟方法的选择理论的更新分子模拟的大致分类与自然界相比的准确程度尺度(米)时间(秒)10-910-710-510-310-1510-910-610-31电子模拟(量化计算,DFT)分子模拟(分子动力学,蒙特卡洛)颗粒方法流体力学量子力学模拟:abinitio原子结构薛定谔方程模拟电子云能量性质,化学键等信息量子化学计算一般处理几个到几十个原子常见软件:GAUSSIAN,NWCHEM等密度泛函(DFT)可以算到上百个原子常见软件:VASP分子级别的模拟分子水平的模拟以分子的运动为主要模拟对象采用经验性的原子间作用函数模拟微粒之间的作用一般情况下不考虑电子转移效应,因而不能准确模拟化学成键作用发展最早1950s,Alder,劳伦斯利物默实验室,分子动力学模拟32个原子1950s,Metropolis,洛斯阿洛莫斯实验室,蒙特卡洛模拟32个原子分子级别的模拟应用的领域很广广泛应用于化学,物理,生物,化工,材料,机械,治药等领域简单易学蒙特卡洛方法蒙特卡洛是一种优化方法通过蒙特卡洛算法来寻求能量最优点随机方法通过系综平均来求取宏观性质模拟的是平衡状态,不涉及时间效应(KMC除外)优点是可以跨越时间因素,缺点是得不到有关时间信息的性质分子动力学可以模拟平衡状态,也可以模拟中间状态可以获得有关时间的信息受时间的限制,无法模拟缓慢过程分子体系(几百~几亿)求解牛顿运动方程宏观性质CPMD:考虑量子效应的分子动力学同时考虑原子核的运动(牛顿力学)和电子的运动(量子力学)能同时准确模拟物理作用和化学键作用目前来说CPMD可以处理的体系还很小(几十个原子)颗粒方法(CoarseGrain)将分子基团(几个或者几十上百个原子)当成单个的微粒来处理微粒之间的作用也是通过类似于分子动力学的位能函数来描述可以模拟更长的时间跨度电子原子核原子量子级别模拟分子级别模拟CG级别模拟分子动力学势能模型分子动力学对势能函数的依赖性:所有从分子动力学计算出来得到的宏观性质最终都取决于势能模型分子动力学的核心:牛顿运动方程分子的总能量为动能与势能的和,分子的势能通常可表示为简单的几何坐标的函数。动能总能量简单分子的势能模型rUr例:甲烷,某些惰性气体质点处理Ur方阱模型Ur阶梯模型复杂分子的势能模型键的伸缩键的弯曲键扭曲非键作用分子内部各原子(基团)之间的范德华力、静电力一般要计算1-4(相隔超过两个键的原子或基团对)15432复杂分子的势能模型qqq分子之间的范德华力分子之间的静电力例子:丙烷CCCHHHHHHHH10个键伸缩项18个键弯曲项8个键扭曲项27个范德华力作用27个静电作用分子动力学力场以简单的数学形式表示的势能函数成为力场。经典力学的计算以力场为依据,力场的完备与否决定计算的正确程度。复杂分子的总势能一般可分为各种类型势能的和。一个简单力场的函数形式:键伸缩20(){1exp[()]}eulDall=---Morse类键长模型能量阱深参数键长平衡键长参数胡克类键长模型20()()2kulll=-键长平衡键长参数键弯曲胡克类键角模型键角平衡键角参数扭矩障碍参数扭动360度所经过的能量最低点的次数键扭曲UU范德华力Lennard-Jones模型UrεσU一般力场中最常见的非键势能形式为Lennard-Jones(LJ)势能不同类别原子之间的LJ作用混合规则ABAB1()2ABABsxss=+ABABezee=通常都取1氢键、交叉项等一般情况下只考虑点电荷之间的作用力不考虑极化作用所带来的长程项的作用U静电力为增加精度,一些力场对氢键定义了专门的势函数,有一些力场还增加了交叉项。力场=解析式+参数力场具有可移植性力场可以较准确地预测其用来进行参数化的性质,其他性质的预测可能不准确力场是经验性的,精度和速度的折中力场模型参数的获得通过量子化学模拟回归得到点电荷范德华力键伸缩、键弯曲、键扭曲实验数据回归键伸缩键弯曲范德华力分子动力学程序的一般步骤初始化能量优化平衡数据产出避免局部分子重叠,并不是动力学模拟根据所有分子的当前坐标计算个分子的受力(位能函数)根据受力更新分子的坐标在此过程中收集用来计算宏观性质的有关信息读入模型参数,模拟控制参数简单小型体系气体的模拟小分子体系,不需要复杂的势能模型几百到几千个分子,分子分布稀疏,大部分是短程作用一般用一台微机就可以处理,计算时间几分钟~几小时简单的液体,不涉及太多的界面性质小分子体系,势能模型不是很复杂几百个分子,可能涉及到静电作用,可能需要长程校正用微机也可以处理,计算时间一般几小时~几天大型(复杂)体系和并行算法必要性体系越来越大模拟时间越来越长解决办法制造更快的处理器并行计算机例子:~50000原子的生物体系,1ns模拟单个处理器:~12天16个并行处理器:~1天或者MPIMessagePassingInterface90年代初制定和完善的一套并行语法支持Fortran,C,C++简单易学并行计算的主要矛盾并行效率需要1小时需要1/2小时完美的并行效率处理器的速度远远超过数据传输的速度,大量的时间花在处理器之间的信息传递上了CPU的速度几乎是几何级数增长内存的速度是代数级数增长加快数据传输,尽量减少花在数据传输上的时间数据传输硬件上的进步算法上做文章数据复制法每一个处理器负责处理一部分原子每一步计算每一个处理器都要接受其它处理器负责处理的原子的相关信息信息传输量大,使用的处理器越多并行效率效率越低一般适合处理5-10万左右微粒的体系N=20n=1~5n=6~10n=16~20n=11~151201481291961613155271741131018实际情况区域分解法按照体系的实际物理位置按区域划分每个处理器的处理范围每一步计算每一个处理器只需要和相邻的处理器交换信息数据传输量小,并行效率高,适合处理大型体系(超过10万微粒)算法比较复杂(边界的处理)N=201201481291961613155271741131018NAMD主要针对与生物和化学软材料体系优点程序设计水平高,计算效率高,号称可以有效并行到上千个处理器兼容多种输入和输出文件格式,有很好的分析辅助软件VMD有很好的维护服务不需安装免费缺点万一需要自己安装的话比较麻烦几种常见的针对软材料模拟分子动力学软件AMBER主要针对生物体系,也适当兼容一般化学分子优点有很好的内置势能模型自定义新模型和新分子很方便有很完善的维护网站缺点计算效率不高(收敛到16个处理器),运算速度慢$400主要针对生物体系,也包含部分化学体系优点势能模型更新很快自定义新模型比较方便维护服务很好缺点运算速度慢,计算效率低$600一般性分子动力学软件,对生物体系略有偏重优点支持多种模型免费缺点仍在开发中,某些方面还不完善一般性分子模拟软件优点兼容当前大多数的势能模型编程水平高,计算效率高(比NAMD差,强于其他所有类似软件)可以模拟软材料和固体物理系统免费缺点维护差~sjplimp/lammps.htmlDL-POLY一般性分子模拟软件优点界面友好计算效率高(有两个版本供选择,适合于不同大小的体系)维护服务很好缺点兼容性不好100英镑主要针对生物体系,也适当照顾一般化学体系优点算法好,计算效率高界面友好维护服务好免费软件缺点兼容性不好分子对接简介分子对接分子对接方法在药物设计中取得巨大的成功,已经成为基于结构药物设计的最重要的方法之一。分子对接方法在大分子模拟中也具有较高的准确度,在抗原表位识别、DNA蛋白质结合模式方面有重要应用。探索生命体系的奥秘什么是分子对接分子对接的概念•从已知结构的受体(靶蛋白或活性位点)和配体出发,通过化学计量学方法模拟分子的几何结构和分子间作用力来进行分子间相互作用识别并预测受体-配体复合物结构的方法称为分子对接。•分子对接计算把配体分子放在受体活性位点的位置,然后按照几何互补、能量互补以及化学环境互补的原则来评价配体和受体相互作用的好坏,并找出两个分子之间最佳的结合模式。分子对接的最初思想起源于FisherE提出的“锁和钥匙模型”。即受体与配体的相互识别首要条件是空间结构的匹配配体受体复合物受体-配体的锁和钥匙模型Ohboy!Whataperfectmatch这类方法首先要建立大量化合物(例如几十至上百万个化合物)的三维结构数据库,然后将库中的分子逐一与靶标分子进行“对接”(docking),通过不断优化小分子化合物的位置(取向)以及分子内部柔性键的二面角(构象),寻找小分子化合物与靶标大分子作用的最佳构象,计算其相互作用及结合能。在库中所有分子均完成了对接计算之后,即可从中找出与靶标分子结合的最佳分子(前50名或前100名)分子对接的目的关注的问题找到底物分子和受体分子见的最佳结合位置如何确定对接分子间的结合强度如何找到最佳的结合位置优化结合自由能分子对接的基本原理配体与受体的结合强度取决于结合的自由能变化△G结合=△H结合–T△S结合=-RTlnKi大部分的分子对接法忽略了全部的熵效应,而在焓效应也只考虑配体与受体的相互作用能,即:Einteraction=Evdw+Eelectrostatic+Eh-bond分子对接的基本方法对接过程中,研究体系的构象不发生变化;适合比较大的体系,如蛋白质直接,蛋白质核酸直接的对接。对接过程中,研究体系尤其是配体的构象允许在定的范围内变化;适合处理大分子和小分子间的对接,对接过程中,小分子的构象一般是可以变化的,但大分子是刚性的。对接过程中,研究体系的构象基本上可以自由变化的;一般用于精确考虑分子间的识别情况;由于计算过程中体系的构象可以变化,所以计算耗费最大。刚性对接半柔性对接柔性对接分子对接方法分类分子对接的基本方法(一)刚性的分子对接方法这种方法是最初的分子对接的方法,在对接中,小分子和蛋白质两种都保持刚性。(1)基于最大团搜索的方法(Clique-SearchBasedApproaches)对接两个刚性分子可以理解为分子在空间的匹配问题,这种匹配可以是一种形状上的互补或相互作用。如氢键受体与氢键给体的互补。搜索在三维空间中有效的条件下的最大匹配受体的活性位点配体有效匹配的距离图集受体-配体的示意图,字母代表特征部分如氢键等,相应的有效匹配的图集如右,三个环性顶点组织的三角形为这个图集的一个最大团(clique)Dock对接程序中刚性对接的算法就是基于这种思想Dock利用球集来表示受体活性位点和配体的形状(2)基于几何哈希技术“geometrichashing”的方法第一部分中,几何哈希表从被对接的一个配体或一系列配体中构建。哈希矩阵含有配体名字和能调整配体在空间方向的参考框架。第二部分即识别阶段,蛋白质的特征用来识别哈希矩阵,每一次匹配表示蛋白质的特征与哈希矩阵中已定义好方位的配体相