1.求证:)(665333ln44ln33ln22ln*Nnnnnn.解析:先构造函数有xxxxx11ln1ln,从而)313121(1333ln44ln33ln22lnnnnnnnnn311212191817161514131213131216533323279189936365111nnnnn所以6653651333ln44ln33ln22lnnnnnnn2.求证:212131211nn解析:)21212121()4141(211121312113333n2)211(221)212121(nnnnnnn3.已知,4nNn.求证:11117123210nnnn.4.求证:213121111nnn解析:一方面:142214131211312111nnn(法二)11131312113111211312111nnnnnnnnn)13)(1(24)2(324)1)(13(2421nnnnnnnnn1)12()12()12(1)1()12(1)12(11222222222nnnnnnnnn另一方面:21221121312111nnnnnnn5.求证:(1))2()1(212ln33ln22ln,22nnnnnn解析:构造函数xxxfln)(,得到22lnlnnnnn,再进行裂项)1(1111ln222nnnnn,求和后可以得到答案函数构造形式:1lnxx,)2(1lnnn5.求证:nnn1211)1ln(113121解析:提示:2ln1ln1ln1211ln)1ln(nnnnnnnnn函数构造形式:xxxx11ln,ln当然本题的证明还可以运用积分放缩如图,取函数xxf1)(,首先:ninABCFxS1,从而,)ln(ln|ln11innxxinninnin取1i有,)1ln(ln1nnn,所以有2ln21,2ln3ln31,…,)1ln(ln1nnn,nnnln)1ln(11,相加后可以得到:)1ln(113121nn另一方面ninABDExS1,从而有)ln(ln|ln11innxxiinninnin取1i有,)1ln(ln11nnn,所以有nn1211)1ln(,所以综上有nnn1211)1ln(1131216.求证:en)!11()!311)(!211(和en)311()8111)(911(2.解析:构造函数后即可证明7.求证:32)]1(1[)321()211(nenn解析:1)1(32]1)1(ln[nnnn,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(xxxxxxx(加强命题)8.证明:)1*,(4)1(1ln54ln43ln32lnnNnnnnn解析:构造函数)1(1)1()1ln()(xxxxf,求导,可以得到:12111)('xxxxf,令0)('xf有21x,令0)('xf有2x,所以0)2()(fxf,所以2)1ln(xx,令12nx有,1ln22nn所以211lnnnn,所以)1*,(4)1(1ln54ln43ln32lnnNnnnnn9.数列na的各项均为正数,nS为其前n项和,对于任意*Nn,总有2,,nnnaSa成等差数列.(Ⅰ)求数列na的通项公式;FEDCBAn-inyxO(Ⅱ)设数列nb的前n项和为nT,且2lnnnnaxb,求证:对任意实数ex,1(e是常数,e=2.71828)和任意正整数n,总有nT2;(Ⅲ)正数数列nc中,)(,*11Nncannn.求数列nc中的最大项.(Ⅰ)解:由已知:对于*Nn,总有22nnnSaa①成立∴21112nnnSaa(n≥2)②①--②得21122nnnnnaaaaa∴111nnnnnnaaaaaa∵1,nnaa均为正数,∴11nnaa(n≥2)∴数列na是公差为1的等差数列又n=1时,21112Saa,解得1a=1∴nan.(*Nn)(Ⅱ)证明:∵对任意实数ex,1和任意正整数n,总有2lnnnnaxb≤21n.∴nnnTn1132121111211122221211131212111nnn(Ⅲ)解:由已知221212cca,54545434343232355,244,33ccaccacca易得12234,...ccccc猜想n≥2时,nc是递减数列.令22ln1ln1,lnxxxxxxxfxxxf则∵当.00ln1,1ln3xfxxx,即则时,∴在,3内xf为单调递减函数.由11lnln11nnccannnn知.∴n≥2时,ncln是递减数列.即nc是递减数列.又12cc,∴数列nc中的最大项为323c.10.已知112111,(1).2nnnaaann证明2nae.解析:nnnnnannanna)21)1(11(21))1(11(1,然后两边取自然对数,可以得到nnnannaln)21)1(11ln(ln1然后运用xx)1ln(和裂项可以得到答案)放缩思路:nnnanna)2111(21nnnannaln)2111ln(ln21nnnna211ln2。于是nnnnnaa211lnln21,.22112211)21(111lnln)211()ln(ln11211111nnniniiininnaaiiaa即.2lnln21eaaann注:题目所给条件ln(1)xx(0x)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2nnnn来放缩:)1(1))1(11(1nnannann)1)()1(11(11nnanna.)1(1))1(11ln()1ln()1ln(1nnnnaann111)1ln()1ln()1(1)]1ln()1ln([212112naaiiaanniiini,即.133ln1)1ln(2eeaann11.已知函数.ln)(xxxf若).()(2ln)()(:,0,0bfbafbaafba证明解析:设函数()()(),(0)gxfxfkxk()ln,()ln()ln(),0.()ln1ln()1ln,2()0,10.2fxxxgxxxkxkxxxkgxxkxkxxxkkgxxkkxkx令则有∴函数kkxg,2[)(在)上单调递增,在]2,0(k上单调递减.∴)(xg的最小值为)2(kg,即总有).2()(kgxg而,2ln)()2ln(ln2ln)2()2()2(kkfkkkkkkfkfkg,2ln)()(kkfxg即.2ln)()()(kkfxkfxf令,,bxkax则.bak.2ln)()()()(babafbfaf).()(2ln)()(bfbafbaaf12.已知函数)(xf是在),0(上处处可导的函数,若)()('xfxfx在0x上恒成立.(I)求证:函数),0()()(在xxfxg上是增函数;(II)当)()()(:,0,0212121xxfxfxfxx证明时;(III)已知不等式01)1ln(xxxx且在时恒成立,求证:).()2)(1(2)1ln()1(14ln413ln312ln21*22222222Nnnnnnn解析:(I)0)()(')('2xxfxxfxg,所以函数),0()()(在xxfxg上是增函数(II)因为),0()()(在xxfxg上是增函数,所以)()()()(212111212111xxfxxxxfxxxxfxxf)()()()(212122212122xxfxxxxfxxxxfxxf两式相加后可以得到)()()(2121xxfxfxf(3))()()()(212111212111nnnnxxxfxxxxxfxxxxxxfxxf)()()()(212122212122nnnnxxxfxxxxxfxxxxxxfxxf……)()()()(21212121nnnnnnnnxxxfxxxxxfxxxxxxfxxf相加后可以得到:)()()()(2121nnxxxfxfxfxf所以)ln()(lnlnlnln2121332211nnnnxxxxxxxxxxxxxx令2)1(1nxn,有22222222)1ln()1(14ln413ln312ln21nn2222222)1(13121ln)1(1413121nnnnn)1(1231121ln)1(13121222)2)(1(2212111nnnnn所以).()2)(1(2)1ln()1(14ln413ln312ln21*22222222Nnnnnnn(方法二)21114ln)2)(1(4ln)2)(1()1ln()1()1ln(222nnnnnnnnn所以)2(24ln21214ln)1ln()1(14ln413ln312ln2122222222nnnnn又1114lnn,所以).()2)(1(2)1ln()1(14ln413ln312ln21*22222222Nnnnnnn13.定义]1[如果),()(baxf在内存在二阶导数)(xf则(1)若对,.0)(),(xfbax有则函数)(xf在),(ba内为凸函数.(2)若对,.0)(),(xfbax有则函数)(xf在),(ba内为凹函数.若函数),()(baxf在内是凸(或凹)函数时,对),(,,,21baxxxn及nii11,有Jensen(琴森)不等式