实数知识点总结制作人周宇峰一、算术平方根1.算术平方根的定义:一般地,如果一个正数x的平方等于a,即ax2,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式ax2(x≥0)中,规定ax。2.a的结果有两种情况:当a是完全平方数时,a是一个有限数;当a不是一个完全平方数时,a是一个无限不循环小数。3.当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。4.夹值法及估计一个(无理)数的大小5.ax2(x≥0)—axa是x的平方x的平方是ax是a的算术平方根a的算术平方根是x二、平方根1.平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果ax2,那么x叫做a的平方根.2.开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。3.平方与开平方互为逆运算:3的平方等于9,9的平方根是34.一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算5.符号:正数a的正的平方根可用a表示,a也是a的算术平方根;正数a的负的平方根可用-a表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。7.ax2—axa是x的平方x的平方是ax是a的平方根a的平方根是x三、立方根1.立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果3xa,那么x叫做a的立方根2.一个数a的立方根,记作3a,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。3.一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。4.利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即330aaa。5.ax3—3axa是x的立方x的立方是ax是a的立方根a的立方根是x四、实数1.有理数的定义:任何有限小数或无限循环小数也都是有理数。2.无理数的定义:无限不循环小数叫无理数3.实数的定义:有理数和无理数统称为实数整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数4.像有理数一样,无理数也有正负之分。例如2,33,是正无理数,2,33,是负无理数。由于非0有理数和无理数都有正负之分,实数也可以这样分类:0正有理数正实数正无理数实数负有理数负实数负无理数5.实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大6.数a的相反数是a,这里a表示任意一个实数。7.实数的绝对值:一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0。8.无限小数是有理数(×)无限小数是无理数(×)有理数是无限小数(×)无理数是无限小数(√)数轴上的点都可以用有理数表示(×)有理数都可以由数轴上的点表示(√)数轴上的点都可以用无理数表示(×)无理数都可以由数轴上的点表示(√)数轴上的点都可以用实数表示(√)实数都可以由数轴上的点表示(√)