1/53.1计算积分2Czdz,其中C是:(1)原点到2i的直线段;(2)原点到2再到2i的折线;(3)原点到i再沿水平到2i的折线。解:(1)C的参数方程为22201ztittit2dzidt于是2221222113Ciidzdtizt(2)12CCC,1C参数方程为02ztt,2C参数方程为201zitt12221222200122113CCCzdzzdzzdztdtiditit(3)12CCC,1C参数方程为01zitt,2C参数方程为02ztit1221222220012113CCCzdzzdzzdzitidtdttii3.2设C是,ize是从到的一周,计算:(1)ReCzdz;(2)ImCzdz;(3)Czdz解:cossinizei,sincosdzid(1)RecossincosCzdzidi;(2)ImsinsincosCzdzid;(3)cossinsincos2Czdziidi3.3计算积分Czzdz,其中C是由直线段11,0xy及上半单位圆周组成的正向闭曲线。解:12CCC,1C表示为zxiy,11,0xy;2C表示为cossin0zxiyi,sincosdzid,2/512110cossinsincosCCCzzdzzzdzzzdzxxdxiidi3.5沿下列指定曲线的正向计算积分21Cdzzz的值:(1)1:2Cz;(2)3:2Cz;(3)1:2Czi;(4)3:2Czi。解:11122fzzzizi(1)2111112002221CCCCdzdzdzdziizzizizz;(2)21111120221CCCCdzdzdzdziiizzizizz;(3)21111100221CCCCdzdzdzdziizzizizz;(4)21111120221CCCCdzdzdzdziiizzizizz3.6设区域D为右半平面,z为D内的圆周1z上的任意一点,用在D内的任意一条曲线C连接原点与z,证明:20Re14zd。证明:函数211在右半平面解析,故从0到z沿任意曲线C的积分与路径无关,积分路径换为先沿实轴从0到1,再沿圆周到z点。1222000=111iziddxiedxe042cosid所以20Re14zd3.8设C为正向椭圆22149xy,定义22Cfzdz,z不在C上,求3/51,,ffifi。解:z在C内部时,22z在=z处不解析,22222Cfzdizzz,211224zfizzi;22122zifiizi;4fii3.9计算下列积分:(1)2siniizdz;(2)11izzedz;(3)212iizdz;(4)1ln11izdzz解:(1)21sin1cos22iiiizdzzdzsin2sin22424zizizzzzsin22ii;(2)11111111111iizziziziizedzzeedzieeie;(3)23111112233iiiizdzizi;(4)22211ln111ln1ln1ln2122iizdzziz2211ln2ln2224i223ln2ln23288i3.10设32efzdzz,求,fifi;当2z时,求fz。解:z在2z内部时,3ez在=z处不解析,3322zefzdziez,4/533223zizifiieiei;33223zizifiieiei;当2z时,3ez将处处解析,所以320efzdzz3.11沿下列指定曲线的正向计算各积分:(1)5cos,:11CzdzCzrz;(2)231,:111CdzCzrzz;(3)2sin3,:22CzdzCzz;(4)3,:1,zCedzCzaza为1a的任何数;(5)2sin,:229CzdzCziz;(6)123cosCCzdzz,其中1:2Cz取正向,2:3Cz取负向。解:(1)cosz在由:1Czr围成的区域内解析,5415cos2cos4!121zCziidzzz;(2)函数23111fzzz在由:1Czr围成的区域内无奇点,处处解析,所以231011Cdzzz;(3)函数2sin2zfzz在由3:2Cz围成的区域内无奇点,处处解析,所以2sin02Czdzz;5/5(4)当1a时,3zefzza在由:1Cz围成的区域内无奇点,处处解析,所以30zCedzza;当1a时,3zefzza在由:1Cz围成的区域内有奇点za,322!zzazaCeidzeeiza;(5)函数2sin9zfzz在由:22Czi围成的区域内有奇点3zi,32sinsinsin32sin3sinh393333ziCCzzzizidzdziizzizi;(6)设2:3Cz取正向,1212333coscoscosCCCCzzzdzdzdzzzz0022coscos2!2!zziizz03.12设fz在1z上解析且01f,试求:11122zfzzdzizz。解:221112111222zzzfzfzfzzdzdzizzizz20201zfzfz20221zzfzzfz20f