二项分布和超几何分布地区别(含问题详解)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实用标准文案文档大全超几何分布和二项分布一、两者的定义是不同的1超几何分布的定义2独立重复试验与二项分布的定义(1)独立重复试验.(2)二项分布.本质区别(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题.(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题.二、两者之间是有联系的人教版新课标选修2-3第59页习题2.2B组第3题:实用标准文案文档大全例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?实用标准文案文档大全【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加.从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.实用标准文案文档大全实用标准文案文档大全实用标准文案文档大全[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理.【正解】(1)同上;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它实用标准文案文档大全们的期望公式:结综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。实用标准文案文档大全①用独立重复试验要求独立(互不影响)而且重复(前后概率都相同)实用标准文案文档大全②如果是任取,是一把取出来,还是分多次取出来,前后两次会造成影响么?概率会相同么?有没有顺序?答题模板模板一离散型随机变量的期望和方差实用标准文案文档大全实用标准文案文档大全建设答题模板求离散型随机变量的均值和方差问题的一般步骤:第一步:确定随机变量的所有可能取值.第二步:求每一个可能值对应的概率.第三步:列出离散型随机变量的分布列.第四步:利用公式求出均值和方差.实用标准文案文档大全第五步:反思回顾.查看关键点、易错点和答题规范.模板二离散型随机变量的决策问题实用标准文案文档大全实用标准文案文档大全实用标准文案文档大全(2008年高考理科二卷)(18)(本大题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410999.01.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).实用标准文案文档大全18.解:各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为,则4~(10)Bp,.(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则A发生当且仅当0,2分()1()PAPA1(0)P4101(1)p,又410()10.999PA,故0.001p.······························································································5分(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.支出1000050000,盈利10000(1000050000)a,盈利的期望为100001000050000EaE,··········································9分由43~(1010)B,知,31000010E,4441010510EaE4443410101010510a.0E≥4441010105100a≥1050a≥15a≥(元).故每位投保人应交纳的最低保费为15元.··························································12分实用标准文案文档大全

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功