研究源于数据研究挖掘机会研究呈现价值1[Table_Summary]隐私计算:动态的加密技术——区块链技术引卷之八通证通研究院区块链研究报告专题报告宏观研究2019.05.30通证通xFENBUSHIDIGITAL分析师:宋双杰,CFAEmail:master117@bitall.cc分析师:孙含儒Email:sunhanru@bqbase.org分析师:吴振宇Email:wuzhenyu@bqbase.org特别顾问沈波RinJX更多研究请关注通证通公众号获取通证通研究院FENBUSHIDIGITAL请务必阅读最后特别声明与免责条款导读:隐私计算技术是密码学的一个前沿发展方向,填补了数据在计算环节隐私性问题的空白,将基于密码学的信息安全体系打造成完整的闭环,为云计算、分布式计算网络和区块链等技术的应用提供隐私性基础。本专题将简述隐私计算技术,并分析其起源、技术方向与应用前景。摘要:随着信息技术的不断发展,数据逐渐成为政府、企业与个人的重要资产,其发掘、存储、处理与使用变得愈发重要,逐渐产生了隐私性需求。隐私计算,是一类数据或计算方法保持加密状态,不泄露给其他合作方的前提下,进行计算合作的技术,其出现填补了密码学出现以来在信息的处理和使用环节的空白。目前阶段,密码学层面的隐私计算主要有全同态加密、多方安全计算、零知识证明等技术方向。满足同态性的加密函数能够实现在不解密原始数据的前提下对加密数据进行某一运算,提供了对加密数据的计算能力。全同态加密算法则是指给定任意一种运算规则,可以通过算法构造出对加密数据的相应运算规则,并满足同态性。全同态加密是相对基础性的隐私计算技术,应用范围较广,但其目前计算效率较低,并存在一定局限性。安全多方计算解决如何在参与计算的各方不泄露自身输入、且没有可信第三方的情况下安全地计算约定的函数并得到可验证结果的问题。主要解决的是互不信任的参与方在保护隐私的前提下协同计算的问题。其自身同样存在局限性,不能保证参与者的诚实度,也无法阻止参与者恶意输入。零知识证明是证明者在不透露隐私数据的情况下,向任意第三方证明自己确实拥有特定数据的算法。多用于匿名区块链隐藏交易细节,实现匿名性。隐私计算在云计算、分布式计算网络和区块链三个方向有广阔发展前景。隐私计算可以让数据在云计算过程中保持加密状态,提高了计算过程中的数据安全。隐私计算也使隐私数据上链成为可能,并且同样通过区块链技术确保其可验证性。风险提示:技术存在瓶颈,落地应用不及预期通证通研究院xFENBUSHIDIGITAL专题报告研究源于数据研究挖掘机会研究呈现价值2目录1隐私计算:加密技术的另一维度...................................................................................................42主要技术方向:全同态加密、安全多方计算与零知识证明.......................................................52.1全同态加密...........................................................................................................................................52.2安全多方计算.......................................................................................................................................72.3零知识证明...........................................................................................................................................83应用前景...........................................................................................................................................93.1安全云计算...........................................................................................................................................93.2分布式计算网络.................................................................................................................................103.3加密链上数据和隐藏交易信息.........................................................................................................11通证通研究院xFENBUSHIDIGITAL专题报告研究源于数据研究挖掘机会研究呈现价值3图表目录图表1:隐私计算主要技术方向...............................................................................................................................5图表2:同态加密技术...............................................................................................................................................7图表3:安全多方计算技术.......................................................................................................................................8图表4:云计算行业规模发展迅速(亿美元).....................................................................................................10图表5:全同态加密在区块链中的应用.................................................................................................................11图表6:安全多方计算在智能合约中的应用.........................................................................................................12通证通研究院xFENBUSHIDIGITAL专题报告研究源于数据研究挖掘机会研究呈现价值4隐私计算技术是密码学的一个前沿发展方向,填补了数据在计算环节隐私性问题的空白,将基于密码学的信息安全体系打造成完整的闭环,为云计算、分布式计算网络和区块链等技术的应用提供隐私性基础。本专题将简述隐私计算技术,并分析其起源、技术方向与应用前景。1隐私计算:加密技术的另一维度随着信息技术的不断发展,数据逐渐成为政府、企业与个人的重要资产,其发掘、存储、处理与使用变得愈发重要,逐渐产生了隐私性需求。数据科学的发展使数据的应用场景不断扩展,相应的合作也开始涌现,隐私性问题也随之而来。例如,企业可能需要使用合作方的数据以形成某种判断或结果,而合作方并不愿意将自己的数据完全交给他人,企业同样不希望自己的查询条件或分析方法被合作方得知;使用云计算资源时,使用者也希望自己的数据和运算方法能够保密,然而现实中却不得不将内容全部上传,从而面临泄露的风险。随着云计算和区块链的发展,隐私计算的需求愈发涌现,这一结合了密码学和计算科学的前沿领域再次受到了大家的关注。隐私计算,是一类在保证数据提供方不泄露敏感数据的前提下,对数据进行计算并能验证计算结果的技术。当代密码学起源于1977年,RonRivest,AdiShamir和LeonardAdleman发明了非对称式加密(又称公开密钥加密)算法RSA。RSA利用了目前计算机分解素因子运算难度的不对称性,设计了公钥用于加密、私钥用于解密的公钥加密体系,私钥不会出现在数据传输环节,极大提高了加密数据传输的安全性。RSA算法发表于1977年4月3日,犹太民族的逾越节,如摩西出埃及一般,人类的加密技术突破了长期以来的瓶颈,到达了新的阶段。密码学通过数学理论将数据转化为密文状态,无私钥不能读取其内容,解决了不安全环境下隐私存储与通信的问题,但在使用环节存在空白。到了信息的使用环节,在通讯和存储过程中处于加密状态的数据就不得不进行解密以用于查询和计算。所以,基于密码学的信息加密体系在使用环节是存在空白的,目前尚不能构成闭环的加密系统。当信息拥有者不得不提交数据使用第三方服务时,他就面临着信息泄露的风险,其他环节的加密状态也就失去了意义。针对这种情况,学术界开展了加密状态下进行数据计算的研究,也就是我们所说的隐私计算。1978年RonRivest、LeonardAdleman和MichaelL.Dertouzos提出了同态加密问题,并在同年提出了满足乘法同态的算法RSA。在此之前,密码学研究关注的都是数据在存储和传输过程中的静态安全,而同态加密问题的提出将加密技术的研究从静态引向动态,是理论上的巨大革新,也开创了隐私计算的先河。1982年,华人图灵奖得主姚期智开创性的提出的百万富翁问题,引入了多方安全计算概念。姚期智在他的论文《ProtocolsforSecureComputations》中提出了百万富翁问题,即两个百万富翁在没有可信第三方、不透露自己的财产状况的情况下,如何比较谁更富有。20世纪80年代,MIT研究员ShafiGoldwasser、SilvioMicali和CharlesRackoff提出了零知识证明的概念。零知识证明涉及两个参与方:证明者和验证者。它的目的是解决如下问题:证明者如通证通研究院xFENBUSHIDIGITAL专题报告研究源于数据研究挖掘机会研究呈现价值5何向验证者证明自己拥有某一特定的数据,但证明过程不能透露任何有关该数据的信息。经过学界的不断研究和发展,以全同态计算、安全多方计算和零知识证明为代表的隐私计算取得了一定的成果,也成为了密码学研究的热点问题之一。2主要技术方向:全同态加密、安全多方计算与零知识证明目前阶段,密码学层面的隐私计算主要有全同态加密(FullHomomorphicEncryption,FHE)、多方安全计算(SecureMulti-PartyComputation,sMPC)、零知识证明(Zero-knowledgeProof)三种主要的技术方向。此外,还有可信执行环境、不可区分混淆等方向。本篇专题将解析全同态加密、安全多方计算与零知识证明,并分析它们的优势与不足。2.1全同态加密在RSA算法问世前使用对称式加密算法的时代,加密和解密数据遵循同样的规则。对称式加密的关键要素包括加密算法和密钥,数据发送方使用特定的密钥加密数据,并且将加密数据和密钥发送给接收方。在传输