周期问题主讲:刘文峰专题简析:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。我们把这种特殊的规律性问题称为周期问题。解答周期问题的关键是找规律,找出周期。确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。例1、你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。(1)□△□△□△□△……(2)□△△□△△□△△……分析:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?(3)公园门口挂了一排彩灯泡按“二红三黄四蓝”重复排列,第63只灯泡是什么颜色?第112只呢?例2、有一列数,按5、6、2、4、5、6、2、4…排列。(1)第129个数是多少?(2)这129个数相加的和是多少?分析与解答:(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2”还剩一个。所以第129个数是5。(2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是17×32+5=549。练习二1,有一列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2,小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?3,河岸上种了100棵桃树,第一棵是蟠桃,后面两棵是水蜜桃,再后面三棵是大青桃。接下去一直这样排列。问:第100棵是什么桃树?三种树各有多少棵?例3、假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?ABCD123456789…分析:从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以根据这些数除以4所得的余数来分析。39÷4=9…388÷4=22所以,39应排在第10个循环的第三个字母C下面,88应排在第22个循环的第四个字母D下面。练习三1,有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?2,假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?ABCD123487659101112…3,2001个学生按下列方法编号排成五列:一二三四五1234598761011121317161514…问:最后一个学生应该排在第几列?例4、1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?分析:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法。(22-1)÷7=3,没有余数,该月22日仍是星期二;(28-1)÷7=3…6,从星期三开始(包括星期三)往后数6天,28日是星期一。(2)1991年、1993年是平年,1992年是闰年,从1991年1月2日到1994年1月1日共1096天,1096÷7=156…4,从星期三开始往后数4天,1994年1月1日是星期六。练习四1,1990年9月22日是星期六,1991年元旦是星期几?2,1989年12月5日是星期二,那么再过10年的12月5日是星期几?3,1996年8月1日是星期四,1996年的元旦是星期几?例5、我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年…。如果公元1年属鸡年,那么公元2001年属什么年?分析:一共有12种动物,因此12为一个循环,为了便于思考,我们把“狗、猪、鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡”看作一个循环,从公元2年到公元2001年共经历了2000年(算头不算尾),2000÷12=166…8,从狗年开始往后数8年,公元2001年是蛇年。练习五我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号。1,如果公元3年属猪年,那么公元2000年属什么年?2,如果公元6年属虎年,那么公元21世纪的第一个虎年是哪一年?3,公元2001年属蛇年,公元2年属什么年?