20162017学年广东省广州市天河区高一上期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

小明文库页(共16页)2016-2017学年广东省广州市天河区高一(上)期末数学试卷一、选择题1.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁UB)=()A.{1,2,5,6}B.{1,2,3,4}C.{2}D.{1}2.(5分)直线x﹣y+3=0的倾斜角是()A.30°B.45°C.60°D.150°3.(5分)下列函数在其定义域上既是奇函数又是减函数的是()A.f(x)=2xB.f(x)=logxC.f(x)=D.f(x)=﹣x|x|4.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=,AA1=1,则异面直线AD与BC1所成角为()A.30°B.45°C.60°D.90°5.(5分)已知直线l1的方程为Ax+3y+C=0,直线l2的方程为2x﹣3y+4=0,若l1与l2的交点在y轴上,则C的值为()A.4B.﹣4C.±4D.与A有关6.(5分)设a=40.1,b=log30.1,c=0.50.1,则()A.a>b>cB.a>c>bC.b>a>cD.b>c>a7.(5分)已知圆x2+y2+2x﹣2y+2a=0截直线x+y+2=0所得弦长为4,则实数a的值是()A.﹣4B.﹣3C.﹣2D.﹣18.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4小明文库页(共16页)9.(5分)函数的零点所在的区间为()A.B.C.D.10.(5分)过点A(3,5)作圆(x﹣2)2+(y﹣3)2=1的切线,则切线的方程为()A.x=3或3x+4y﹣29=0B.y=3或3x+4y﹣29=0C.x=3或3x﹣4y+11=0D.y=3或3x﹣4y+11=011.(5分)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,BC=,AC=1,∠ACB=90°,则此球的体积等于()A.πB.πC.πD.8π12.(5分)已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)=,则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上的交点个数为()A.5B.6C.7D.8二、填空题13.(5分)函数y=ln(1﹣2x)的定义域是.14.(5分)设函数f(x)=,则f(f(﹣4))=.15.(5分)若直线(a+1)x+ay=0与直线ax+2y=1垂直,则实数a=.16.(5分)已知α,β是两个平面,m,n是两条直线,则下列四个结论中,正确的有(填写所有正确结论的编号)①若m∥α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若a∥β,m⊂α,则m∥β;④若m⊥n.m⊥α,n∥β,则α⊥β三、解答题小明文库页(共16页)17.(10分)已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;(Ⅱ)求线段AB的垂直平分线方程.18.(12分)如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA的中点.(1)求证:PC∥平面BDE(2)求三棱锥P﹣CED的体积.19.(12分)已知函数f(x)=2x+2ax(a为实数),且f(1)=.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性并证明;(3)判断函数f(x)在区间[0,+∞)的单调性,并用定义证明.20.(12分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1=,M为BC的中点,P为侧棱BB1上的动点.(1)求证:平面APM⊥平面BB1C1C;(2)试判断直线BC1与AP是否能够垂直.若能垂直,求PB的长;若不能垂直,请说明理由.21.(12分)已知半径为的圆C,其圆心在射线y=﹣2x(x<0)上,且与直线小明文库页(共16页)x+y+1=0相切.(1)求圆C的方程;(2)从圆C外一点P(x0,y0))向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求△PMC面积的最小值,并求此时点P的坐标.22.(12分)已知a∈R,函数f(x)=log2(+a).(1)若f(1)<2,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.小明文库页(共16页)2016-2017学年广东省广州市天河区高一(上)期末数学试卷参考答案与试题解析一、选择题1.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁UB)=()A.{1,2,5,6}B.{1,2,3,4}C.{2}D.{1}【解答】解:∵全集U={1,2,3,4,5,6},B={2,3,4},∴∁UB={1,5,6},又∵A={1,2},∴A∩(∁UB)={1},故选:D.2.(5分)直线x﹣y+3=0的倾斜角是()A.30°B.45°C.60°D.150°【解答】解:设直线x﹣y+3=0的倾斜角为θ.由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°.故选C.3.(5分)下列函数在其定义域上既是奇函数又是减函数的是()A.f(x)=2xB.f(x)=logxC.f(x)=D.f(x)=﹣x|x|【解答】解:对于A,B,非奇非偶函数;对于C,是奇函数,不是定义域上的减函数;对于D,在其定义域上既是奇函数又是减函数,小明文库页(共16页)故选:D.4.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=,AA1=1,则异面直线AD与BC1所成角为()A.30°B.45°C.60°D.90°【解答】解:如图,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A(),D(0,0,0),B(,0),C1(0,,1),=(﹣),=(﹣,0,1),设异面直线AD与BC1所成角为θ,则cosθ===.∴θ=30°.∴异面直线AD与BC1所成角为30°.故选:A.5.(5分)已知直线l1的方程为Ax+3y+C=0,直线l2的方程为2x﹣3y+4=0,若l1与l2的交点在y轴上,则C的值为()A.4B.﹣4C.±4D.与A有关【解答】解:直线2x﹣3y+4=0与y轴的交点(0,),代入直线Ax+3y+C=0,可得4+C=0,解得C=﹣4.故选B.6.(5分)设a=40.1,b=log30.1,c=0.50.1,则()小明文库页(共16页)A.a>b>cB.a>c>bC.b>a>cD.b>c>a【解答】解:∵a=40.1>1,b=log30.1<0,0<c=0.50.1<1,∴a>c>b.故选:B.7.(5分)已知圆x2+y2+2x﹣2y+2a=0截直线x+y+2=0所得弦长为4,则实数a的值是()A.﹣4B.﹣3C.﹣2D.﹣1【解答】解:圆x2+y2+2x﹣2y+2a=0即(x+1)2+(y﹣1)2=2﹣2a,故弦心距d==.再由弦长公式可得2﹣2a=2+4,∴a=﹣2,故选:C.8.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4【解答】解:由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,故该几何体的表面积S=2×π+(2+π)×2=3π+4,故选:D9.(5分)函数的零点所在的区间为()A.B.C.D.【解答】解:函数在(0,+∞)上单调递增.小明文库页(共16页)因为,,,,所以,所以根据根的存在性定理可知函数的零点所在的区间为.故选D.10.(5分)过点A(3,5)作圆(x﹣2)2+(y﹣3)2=1的切线,则切线的方程为()A.x=3或3x+4y﹣29=0B.y=3或3x+4y﹣29=0C.x=3或3x﹣4y+11=0D.y=3或3x﹣4y+11=0【解答】解:由圆的一般方程可得圆的圆心与半径分别为:(2,3);1,当切线的斜率存在,设切线的斜率为k,则切线方程为:kx﹣y﹣3k+5=0,由点到直线的距离公式可得:=1解得:k=,所以切线方程为:3x+4y﹣29=0;当切线的斜率不存在时,直线为:x=3,满足圆心(2,3)到直线x=3的距离为圆的半径1,x=3也是切线方程;故选A.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,BC=,AC=1,∠ACB=90°,则此球的体积等于()A.πB.πC.πD.8π【解答】解:∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,棱柱的体积为,BC=,AC=1,∠ACB=90°,∴AA1=小明文库页(共16页)∴AA1=2,∵BC=,AC=1,∠ACB=90°,△ABC外接圆的半径R=1,∴外接球的半径为=,∴球的体积等于=π,故选:C.12.(5分)已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)=,则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上的交点个数为()A.5B.6C.7D.8【解答】解:由f(x)+f(2﹣x)=0,可得函数f(x)的图象关于点M(1,0)对称.由f(x﹣2)=f(﹣x),可得函数f(x)的图象关于直线x=﹣1对称.又在[﹣1,1]上表达式为f(x)=,可得图象:进而得到在区间[﹣3,3]上的图象.画出函数g(x)=在区间[﹣3,3]上的图象,其交点个数为6个.故选:B.二、填空题13.(5分)函数y=ln(1﹣2x)的定义域是{x|x<}.【解答】解:根据题意:1﹣2x>0小明文库页(共16页)∴x<故答案为:{x|x<}14.(5分)设函数f(x)=,则f(f(﹣4))=3.【解答】解:∵f(x)=,∴f(﹣4)=()﹣4﹣7=9,f(f(﹣4))=f(9)==3.故答案为:3.15.(5分)若直线(a+1)x+ay=0与直线ax+2y=1垂直,则实数a=0或﹣3.【解答】解:当a=0时,两条直线方程分别化为:x=0,2y=1,此时两条直线垂直,因此a=0满足条件.当a≠0时,两条直线的斜率分别为﹣,﹣,而﹣•(﹣)=﹣1,此时a=﹣3.综上可得:a=0或﹣3.故答案为:0或﹣3.16.(5分)已知α,β是两个平面,m,n是两条直线,则下列四个结论中,正确的有②③(填写所有正确结论的编号)①若m∥α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若a∥β,m⊂α,则m∥β;④若m⊥n.m⊥α,n∥β,则α⊥β【解答】解:①若m∥α,n∥α,则m与n的关系不确定,故错误;②如果m⊥α,n∥α,那么平面α内存在直线l使,m⊥l,n∥l,故m⊥n,故正确;小明文库页(共16页)③如果α∥β,m⊂α,那么m与β无公共点,则m∥β,故正确;④如果m⊥n,m⊥α,n∥β,那么α与β的关系不确定,故错误;故答案为:②③.三、解答题17.(10分)已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;(Ⅱ)求线段AB的垂直平分线方程.【解答】解:(Ⅰ)因为,…(2分)所以由点斜式得直线l的方程4x+3y+1=0…(4分)(Ⅱ)因为AB的中点坐标为(5,﹣2),AB的垂直平分线斜率为…(6分)所以由点斜式得AB的中垂线方程为3x﹣4y﹣23=0…(8分)18.(12分)如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功