小明文库页(共17页)2016-2017学年河北省衡水市冀州中学高一(下)期末数学试卷(理科)(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}2.(5分)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4B.6C.10D.173.(5分)在△ABC中,如果,B=30°,b=2,则△ABC的面积为()A.4B.1C.D.24.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.5.(5分)已知等差数列{an}中,前n项和为Sn,若a2+a8=10,则S9=()A.36B.40C.42D.456.(5分)a,b为正实数,若函数f(x)=ax3+bx+ab﹣1是奇函数,则f(2)的最小值是()A.2B.4C.8D.167.(5分)若圆(x﹣3)2+(y+5)2=r2上的点到直线4x﹣3y﹣2=0的最近距离等于1,则半径r的值为()A.4B.5C.6D.98.(5分)函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则+的最小值为()A.3+2B.3+2C.7D.119.(5分)若cos(﹣α)=,则sin2α=()小明文库页(共17页)A.B.C.﹣D.﹣10.(5分)如图是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD长为2;侧视图为一直角三角形;俯视图为一直角梯形,且AB=BC=1,则此几何体的体积是()A.B.C.D.111.(5分)已知等差数列前n项和为Sn.且S13<0,S12>0,则此数列中绝对值最小的项为()A.第5项B.第6项C.第7项D.第8项12.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案直接答在答题纸上.13.(5分)已知关于x的不等式的解集是.则a=.14.(5分)在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.15.(5分)实数x,y满足x2+y2+xy=1,则x+y的最小值为.16.(5分)已知数列{an}中,a1=1,an=2an﹣1+2n(n≥2),则an=.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算小明文库页(共17页)步骤.17.(10分)已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.18.(12分)已知数列{an}是首项为正数的等差数列,a1•a2=3,a2•a3=15.(1)求数列{an}的通项公式;(2)设bn=(an+1)•2,求数列{bn}的前n项和Tn.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.(1)求证:AB1⊥BC1;(2)求二面角B﹣AB1﹣C的正弦值.20.(12分)已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|=,求m的值;(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为,若存在,求出c的范围,若不存在,说明理由.21.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.22.(12分)已知函数f(x)=log4(4x+1)+2kx(k∈R)是偶函数.(1)求k的值;小明文库页(共17页)(2)若方程f(x)=m有解,求m的取值范围.小明文库页(共17页)2016-2017学年河北省衡水市冀州中学高一(下)期末数学试卷(理科)(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}【解答】解:把x=1,2,3,4分别代入y=3x﹣2得:y=1,4,7,10,即B={1,4,7,10},∵A={1,2,3,4},∴A∩B={1,4},故选:D.2.(5分)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4B.6C.10D.17【解答】解:作出不等式组表示的可行域,如右图中三角形的区域,作出直线l0:2x+5y=0,图中的虚线,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.故选:B.小明文库页(共17页)3.(5分)在△ABC中,如果,B=30°,b=2,则△ABC的面积为()A.4B.1C.D.2【解答】解:在△ABC中,由,可得a=c,又∵B=30°,由余弦定理,可得:cosB=cos30°===,解得c=2.故△ABC是等腰三角形,C=B=30°,A=120°.故△ABC的面积为=,故选C.4.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.【解答】解:∵已知点A(1,3),B(4,﹣1),∴=(4,﹣1)﹣(1,3)=(3,﹣4),||==5,则与向量同方向的单位向量为=,故选A.5.(5分)已知等差数列{an}中,前n项和为Sn,若a2+a8=10,则S9=()小明文库页(共17页)A.36B.40C.42D.45【解答】解:由等差数列的性质可得:a1+a9=a2+a8=10,则S9===45.故选:D.6.(5分)a,b为正实数,若函数f(x)=ax3+bx+ab﹣1是奇函数,则f(2)的最小值是()A.2B.4C.8D.16【解答】解:因为f(x)=ax3+bx+ab﹣1是奇函数,所以,即,由a,b为正实数,所以b=>0,所以f(x)=ax3+x,则f(2)=8a+≥2=8(当且仅当8a=,即a=时取等号),故选:C.7.(5分)若圆(x﹣3)2+(y+5)2=r2上的点到直线4x﹣3y﹣2=0的最近距离等于1,则半径r的值为()A.4B.5C.6D.9【解答】解:由题意可得,圆心(3,﹣5)到直线的距离等于r+1,即|=r+1,求得r=4,故选:A.8.(5分)函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则+的最小值为()A.3+2B.3+2C.7D.11【解答】解:函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A(﹣1,﹣1),小明文库页(共17页)∵点A在直线mx+ny+1=0上,其中m>0,n>0,∴﹣m﹣n+1=0,即m+n=1.则+=(m+n)=3++≥3+2=3+2,当且仅当n=m=2﹣时取等号.故选:A.9.(5分)若cos(﹣α)=,则sin2α=()A.B.C.﹣D.﹣【解答】解:法1°:∵cos(﹣α)=,∴sin2α=cos(﹣2α)=cos2(﹣α)=2cos2(﹣α)﹣1=2×﹣1=﹣,法2°:∵cos(﹣α)=(sinα+cosα)=,∴(1+sin2α)=,∴sin2α=2×﹣1=﹣,故选:D.10.(5分)如图是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD长为2;侧视图为一直角三角形;俯视图为一直角梯形,且AB=BC=1,则此几何体的体积是()A.B.C.D.1【解答】解:由三视图知几何体为四棱锥与三棱锥的组合体,其直观图如图:根据三视图中正视图是一等腰直角三角形,且斜边BD长为2,∴棱锥的高为1,底面直角梯形的底边长分别为1、2,高为1,∴底面面积为=,小明文库页(共17页)∴几何体的体积V=××1=.故选A.11.(5分)已知等差数列前n项和为Sn.且S13<0,S12>0,则此数列中绝对值最小的项为()A.第5项B.第6项C.第7项D.第8项【解答】解:∵S13===13a7<0,S12===6(a6+a7)>0∴a6+a7>0,a7<0,∴|a6|﹣|a7|=a6+a7>0,∴|a6|>|a7|∴数列{an}中绝对值最小的项是a7故选C.12.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【解答】解:如图,小明文库页(共17页)∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.把答案直接答在答题纸上.13.(5分)已知关于x的不等式的解集是.则a=2.【解答】解:由不等式判断可得a≠0,所以原不等式等价于,由解集特点可得a>0且,则a=2.故答案为:214.(5分)在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3,则BC的长是.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,小明文库页(共17页)所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.15.(5分)实数x,y满足x2+y2+xy=1,则x+y的最小值为﹣.【解答】解:由x2+y2+xy=1,可得(x+y)2=1+xy≤1+,解得:x+y≥﹣,当且仅当x=y=﹣时取等号.故答案为:﹣.16.(5分)已知数列{an}中,a1=1,an=2an﹣1+2n(n≥2),则an=(2n﹣1)•2n﹣1.【解答】解:∵an=2an﹣1+2n(n≥2),∴﹣=1,可得数列是等差数列,公差为1,首项为.∴==,解得an=(2n﹣1)•2n﹣1.n=1时也成立.∴an=(2n﹣1)•2n﹣1.故答案为:(2n﹣1)•2n﹣1.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.小明文库页(共17页)17.(10分)已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tanxcosx•(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣≤2x﹣≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数的增区间为[kπ﹣,kπ+],k∈Z,当k=0时,增区间为[﹣,],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,],由2kπ+≤2x﹣≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,即函数的减区间为[kπ+,kπ+],k∈Z,当k=﹣1时,减区间为[﹣,﹣],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣],即在区间[﹣,]上,函数的减区间为∈[﹣,﹣],增区间为[﹣,].小明文库