小明文库页(共19页)2016-2017学年辽宁省实验中学分校高一(上)期末数学试卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,M={x|x<0或x>2},N={x|x2﹣4x+3<0},则图中阴影部分所表示的集合是()A.{x|0≤x<1}B.{x|0≤x≤2}C.{x|1<x≤2}D.{x|x<2}2.(5分)在空间直角坐标系中,点(﹣2,1,4)关于x轴的对称点的坐标为()A.(﹣2,1,﹣4)B.(﹣2,﹣1,﹣4)C.(2,1,﹣4)D.(2,﹣1,4)3.(5分)log52•log425等于()A.﹣1B.C.1D.24.(5分)设有直线m,n和平面α,β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α5.(5分)如图,将一个正方体的表面展开,直线AB与直线CD在原来正方体中的位置关系是()A.平行B.相交并垂直C.相交且成60°角D.异面6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()小明文库页(共19页)A.B.C.D.7.(5分)(文)长方体ABCD﹣A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=,AA1=1,则顶点A、B间的球面距离是()A.B.C.D.28.(5分)若直线3x﹣4y+12=0与两坐标轴交点为A、B,则以AB为直径的圆的方程是()A.x2+y2+4x﹣3y=0B.x2+y2﹣4x﹣3y=0C.x2+y2+4x﹣3y﹣4=0D.x2+y2﹣4x﹣3y+8=09.(5分)已知函数f(x)=ln(﹣2x)+3,则f(lg2)+f(lg)=()A.0B.﹣3C.3D.610.(5分)已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f()=0,则不等式f()>0的解集为()A.(0,)∪(2,+∞)B.(,1)∪(2,+∞)C.(0,)D.(2,+∞)11.(5分)过圆x2+y2﹣4x=0外一点P(m,n)作圆的两条切线,当这两条切线互相垂直时,m,n应满足的关系式为()小明文库页(共19页)A.(m﹣2)2+n2=4B.(m+2)2+n2=4C.(m﹣2)2+n2=8D.(m+2)2+n2=812.(5分)已知函数f(x)=,若关于x的方程f(x)=k有两个不等的实根,则实数k的取值范围是()A.(0,+∞)B.(﹣∞,1)C.(1,+∞)D.(0,1]二.填空题:本大题共4小题,每小题5分,共20分.13.(5分)函数是幂函数,且在x∈(0,+∞)上是减函数,则实数m=.14.(5分)已知直线l通过直线3x+5y﹣4=0和直线6x﹣y+3=0的交点,且与直线2x+3y+5=0平行,则直线l的方程为.15.(5分)与直线x+y﹣2=0和曲线x2+y2﹣12x﹣12y+54=0都相切的半径最小的圆的标准方程是.16.(5分)如图,在正三棱柱ABC﹣A1B1C1中,D为棱AA1的中点.若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为.三.解答题:本大题共6小题,共70分..解答应写出文字说明,证明过程或演算步骤.17.(10分)记函数的定义域为集合A,函数g(x)=lg[(x﹣a+1)(x﹣a﹣1)]的定义域为集合B.(Ⅰ)求集合A;小明文库页(共19页)(Ⅱ)若A∩B=A,求实数a的取值范围.18.(12分)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.19.(12分)已知一曲线C是与两个定点O(0,0),A(3,0)的距离比为的点的轨迹.(1)求曲线C的方程,并指出曲线类型;(2)过(﹣2,2)的直线l与曲线C相交于M,N,且|MN|=2,求直线l的方程.20.(12分)如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.21.(12分)已知函数f(x)=2x+2﹣x.(Ⅰ)试写出这个函数的性质(不少于3条,不必说明理由),并作出图象;(Ⅱ)设函数g(x)=4x+4﹣x﹣af(x),求这个函数的最小值.小明文库页(共19页)22.(12分)已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x﹣2y﹣1=0,AC边上的高BH所在直线的方程为y=0.(1)求△ABC的顶点B、C的坐标;(2)若圆M经过不同的三点A、B、P(m,0),且斜率为1的直线与圆M相切于点P,求圆M的方程.小明文库页(共19页)2016-2017学年辽宁省实验中学分校高一(上)期末数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,M={x|x<0或x>2},N={x|x2﹣4x+3<0},则图中阴影部分所表示的集合是()A.{x|0≤x<1}B.{x|0≤x≤2}C.{x|1<x≤2}D.{x|x<2}【解答】解:阴影部分为∁UM∩N,而N={x|x2﹣4x+3<0}={x|1<x<3},∁UM={x|0≤x≤2},∴∁UM∩N={x|1<x≤2},故选C.2.(5分)在空间直角坐标系中,点(﹣2,1,4)关于x轴的对称点的坐标为()A.(﹣2,1,﹣4)B.(﹣2,﹣1,﹣4)C.(2,1,﹣4)D.(2,﹣1,4)【解答】解:∵在空间直角坐标系中,点(x,y,z)关于x轴的对称点的坐标为:(x,﹣y,﹣z),∴点(﹣2,1,4)关于x轴的对称点的坐标为:(﹣2,﹣1,﹣4).故选B.3.(5分)log52•log425等于()A.﹣1B.C.1D.2小明文库页(共19页)【解答】解:原式=•=1,故选:C4.(5分)设有直线m,n和平面α,β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α【解答】解:由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m⊂α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,m⊄α,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选:D.5.(5分)如图,将一个正方体的表面展开,直线AB与直线CD在原来正方体中的位置关系是()A.平行B.相交并垂直C.相交且成60°角D.异面【解答】解:将正方体还原后如图,A与C重合,连结BC,则△BDC是等边三角形,∴直线AB与直线CD在原来正方体中的位置关系是相交且成60°角.故选:C.小明文库页(共19页)6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.7.(5分)(文)长方体ABCD﹣A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=,AA1=1,则顶点A、B间的球面距离是()小明文库页(共19页)A.B.C.D.2【解答】解:∵,∴,设BD1∩AC1=O,则,,∴,故选B8.(5分)若直线3x﹣4y+12=0与两坐标轴交点为A、B,则以AB为直径的圆的方程是()A.x2+y2+4x﹣3y=0B.x2+y2﹣4x﹣3y=0C.x2+y2+4x﹣3y﹣4=0D.x2+y2﹣4x﹣3y+8=0【解答】解:由x=0得y=3,由y=0得x=﹣4,∴A(﹣4,0),B(0,3),∴以AB为直径的圆的圆心是(﹣2,),半径r=,以AB为直径的圆的方程是,即x2+y2+4x﹣3y=0.故选A.9.(5分)已知函数f(x)=ln(﹣2x)+3,则f(lg2)+f(lg)=()A.0B.﹣3C.3D.6【解答】解:∵f(x)=ln(﹣2x)+3,∴f(x)+f(﹣x)=ln(﹣2x)+3+ln(+2x)+3小明文库页(共19页)=ln[()•()+6,=ln1+6=6,∴f(lg2)+f(lg)=f(lg2)+f(﹣lg2)=6.故选:D.10.(5分)已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f()=0,则不等式f()>0的解集为()A.(0,)∪(2,+∞)B.(,1)∪(2,+∞)C.(0,)D.(2,+∞)【解答】解:方法1:因为函数f(x)是定义在R上的偶函数,所以不等式f()>0等价为,因为函数f(x)在[0,+∞)上是增函数,且f()=0,所以,即,即或,解得或x>2.方法2:已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f()=0,所以f(x)在(﹣∞,0]上是减函数,且f(﹣)=0.①若,则,此时解得.②若,则,解得x>2.小明文库页(共19页)综上不等式f()>0的解集为(0,)∪(2,+∞).故选A.11.(5分)过圆x2+y2﹣4x=0外一点P(m,n)作圆的两条切线,当这两条切线互相垂直时,m,n应满足的关系式为()A.(m﹣2)2+n2=4B.(m+2)2+n2=4C.(m﹣2)2+n2=8D.(m+2)2+n2=8【解答】解:把圆的方程化为标准方程:(x﹣2)2+y2=4,故圆心坐标为(2,0),半径r=2,根据题意画出图形,如图所示:连接MQ,MN,得到∠MQP=∠MNP=90°,又∠QPN=90°,∴PQMN为矩形,又MQ=MN=2,∴PQMN为边长为2的正方形,则|PM|=2,即(m﹣2)2+n2=8.故选C12.(5分)已知函数f(x)=,若关于x的方程f(x)=k有两个不等的实根,则实数k的取值范围是()A.(0,+∞)B.(﹣∞,1)C.(1,+∞)D.(0,1]【解答】解:画出函数f(x)=的图象,小明文库页(共19页)和直线y=k,关于x的方程f(x)=k有两个不等的实根等价于f(x)的图象与直线有且只有两个交点.观察得出:(1)k>1,或k<0有且只有1个交点;(2)0<k≤1有且只有2个交点.故实数k的取值范围是(0,1].故选D.二.填空题:本大题共4小题,每小题5分,共20分.13.(5分)函数是幂函数,且在x∈(0,+∞)上是减函数,则实数m=2.【解答】解:是幂函数∴m2﹣m﹣1=1解得m=2或m=﹣1当m=2时,f(x)=x﹣3在x∈(0,+∞)上是减函数,满足题意.当m=﹣1时,f(x)=x0在x∈(0,+∞)上不是减函数,不满足题意.故答案为:2.14.(5分)已知直线l通过直线3x+5y﹣4=0和直线6x﹣y+3=0的交点,且与直线2x+3y+5=0平行,则直线l的方程为6x+9y﹣7=0.小明文库页(共19页)【解答】解:联立方程,可得解方程组可得∵直线l与