小明文库页(共16页)2017-2018学年吉林省松原市扶余一中高一(上)期末数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A.y=x2+1B.y=2xC.y=x+D.y=﹣x2+12.(5分)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线都与直线l异面B.α内不存在与直线l平行的直线C.α内存在唯一的直线与直线l平行D.α内存在唯一的直线与直线l平行3.(5分)已知m、n为两条不同的直线,α、β为两个不同的平面,下列命题中的正确的是()A.若α∥β,m∥α,则m∥βB.若m∥α,m⊥n,则n⊥αC.若α⊥β,m⊥β,则m⊥αD.若m⊥α,m⊥β,则α∥β4.(5分)函数f(x)=x2+lnx﹣4的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.(5分)已知直线l:x+2y+k+1=0被圆C:x2+y2=4所截得的弦长为4,则k是()A.﹣1B.﹣2C.0D.26.(5分)直线l经过点P(﹣3,4)且与圆x2+y2=25相切,则直线l的方程是()A.y﹣4=﹣(x+3)B.y﹣4=(x+3)C.y+4=﹣(x﹣3)D.y+4=(x﹣3)7.(5分)如图是一几何体的直观图、正视图和俯视图.下列选项图中,按照画三视图的要求画出的该几何体的侧视图是()小明文库页(共16页)A.B.C.D.8.(5分)下列命题中正确的是()A.正方形的直观图是正方形B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台9.(5分)已知正方体的体积是64,则其外接球的表面积是()A.32πB.192πC.48πD.无法确定10.(5分)如图所示,正四棱锥P﹣ABCD的底面面积为3,体积为,E为侧棱PC的中点,则PA与BE所成的角为()A.30°B.45°C.60°D.90°11.(5分)如果实数x,y满足(x﹣2)2+y2=3,那么的最大值是()A.B.C.D.12.(5分)点M(x0,y0)在圆x2+y2=R2外,则直线x0x+y0y=R2与圆的位置关系是()A.相切B.相交C.相离D.不确定小明文库页(共16页)二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填在答题卡的横线上,填在试卷上的答案无效)13.(5分)直线x+y﹣3=0的倾斜角是.14.(5分)直线y=kx与直线y=2x+1垂直,则k等于.15.(5分)已知直线l与直线2x﹣3y+4=0关于直线x=1对称,则直线l的方程为.16.(5分)如图,在三棱锥P﹣ABC中,PA=PB=PC=BC,且∠BAC=,则PA与底面ABC所成角为.三、解答题:(共70分,解答应写出必要的文字说明、证明过程或演算步骤).17.(10分)已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x﹣3y+16=0,CA:2x+y﹣2=0,求AC边上的高所在的直线方程.18.(12分)求经过点P(6,﹣4)且被定圆O:x2+y2=20截得的弦长为6的直线AB的方程.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:PA∥平面EDB;(2)证明:BC⊥DE.小明文库页(共16页)20.(12分)已知曲线方程为:x2+y2﹣2x﹣4y+m=0.(1)若此曲线是圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值.21.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求证:(1)平面BDD1⊥平面PAC;(2)直线PB1⊥平面PAC.22.(12分)已知四棱锥PABCD如图所示,AB∥CD,BC⊥CD,AB=BC=2,CD=PD=1,△PAB为等边三角形.(1)证明:PD⊥平面PAB;(2)求二面角P﹣CB﹣A的余弦值.小明文库页(共16页)2017-2018学年吉林省松原市扶余一中高一(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A.y=x2+1B.y=2xC.y=x+D.y=﹣x2+1【解答】解:对于A,函数是偶函数,在区间(0,+∞)上单调递增,符合题意;对于B,函数不是偶函数,不合题意;对于C,函数不是偶函数,不合题意;对于D,函数是偶函数,在区间[0,+∞)上单调递减,不符合题意;故选:A.2.(5分)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线都与直线l异面B.α内不存在与直线l平行的直线C.α内存在唯一的直线与直线l平行D.α内存在唯一的直线与直线l平行【解答】解:∵直线l不平行于平面α,且l⊄α,∴直线l与平面α相交,∴α内不存在与直线l平行的直线.故选:B.3.(5分)已知m、n为两条不同的直线,α、β为两个不同的平面,下列命题中的正确的是()A.若α∥β,m∥α,则m∥βB.若m∥α,m⊥n,则n⊥α小明文库页(共16页)C.若α⊥β,m⊥β,则m⊥αD.若m⊥α,m⊥β,则α∥β【解答】解:A不正确,因为α∥β,m∥α的条件下,m∥β或m⊂β;B不正确,因为若n⊂α时,亦有m∥α,m⊥n;C不正确,因为α⊥β,m⊥β可得出m∥αm⊂α;D正确,由m⊥α,m⊥β可得出α∥β故选D4.(5分)函数f(x)=x2+lnx﹣4的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解答】解:∵连续函数f(x)=x2+lnx﹣4,f(1)=﹣3<0,f(2)=ln2>0,∴函数f(x)=x2+lnx﹣4的零点所在的区间是(1,2).故选B.5.(5分)已知直线l:x+2y+k+1=0被圆C:x2+y2=4所截得的弦长为4,则k是()A.﹣1B.﹣2C.0D.2【解答】解:设圆心(0,0)到直线l:x+2y+k+1=0的距离为d,则由点到直线的距离公式得d==|k+1|,再由4=2=2,k=﹣1,故选A.6.(5分)直线l经过点P(﹣3,4)且与圆x2+y2=25相切,则直线l的方程是()A.y﹣4=﹣(x+3)B.y﹣4=(x+3)C.y+4=﹣(x﹣3)D.y+4=(x﹣3)【解答】解:显然点(﹣3,4)在圆x2+y2=25上,设切线方程的斜率为k,则切线方程为y﹣4=k(x+3),即kx﹣y+3k﹣4=0,小明文库页(共16页)∴圆心(0,0)到直线的距离d==5,解得k=,则切线方程为y﹣4=(x+3).故选:B.7.(5分)如图是一几何体的直观图、正视图和俯视图.下列选项图中,按照画三视图的要求画出的该几何体的侧视图是()A.B.C.D.【解答】解:根据该几何体的直观图、正视图和俯视图,可得它的侧视图为直角三角形PAD及其PA边上的中线,故选:B.8.(5分)下列命题中正确的是()A.正方形的直观图是正方形B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台【解答】解:在A中,正方形的直观图是平行四边形,故A错误;在B中,由斜二测画法规则知平行性不变,即平行四边形的直观图是平行四边形,故②正确;在C中,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边小明文库页(共16页)都互相平行的几何体叫棱柱,要注意棱柱的每相邻两个四边形的公共边互相平行,故C错误;在D中,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D错误.故选:B.9.(5分)已知正方体的体积是64,则其外接球的表面积是()A.32πB.192πC.48πD.无法确定【解答】解:∵正方体的体积是64,∴正方体的边长为4,∴正方体的外接球的半径R=2,∴正方体的外接球的表面积S=4πR2=48π,故选:C.10.(5分)如图所示,正四棱锥P﹣ABCD的底面面积为3,体积为,E为侧棱PC的中点,则PA与BE所成的角为()A.30°B.45°C.60°D.90°【解答】解:连结AC、BD,交于点O,连结OP,则OP⊥平面ABCD,∵正四棱锥P﹣ABCD的底面面积为3,体积为,∴AB=,OA===,==,解得OP=,以OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,小明文库页(共16页)则P(0,0,),A(,0,0),B(0,,0),C(﹣,0,0),E(﹣,0,),=(,0,﹣),=(﹣,﹣,),设PA与BE所成的角为θ,则cosθ===,∴θ=60°.∴PA与BE所成的角为60°.故选:C.11.(5分)如果实数x,y满足(x﹣2)2+y2=3,那么的最大值是()A.B.C.D.【解答】解:设=k,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得|OC|=2,|CE|=,可由勾股定理求得|OE|=1,于是可得到k==,即为的最大值.故选:C.小明文库页(共16页)12.(5分)点M(x0,y0)在圆x2+y2=R2外,则直线x0x+y0y=R2与圆的位置关系是()A.相切B.相交C.相离D.不确定【解答】解:∵点M(x0,y0)在圆x2+y2=R2外,∴x02+y02>R2,∴圆心(0,0)到直线x0x+y0y=R2的距离:d=<R,∴直线x0x+y0y=R2与圆相交.故选:B.二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填在答题卡的横线上,填在试卷上的答案无效)13.(5分)直线x+y﹣3=0的倾斜角是π.【解答】解:直线x+y﹣3=0即y=﹣x+,故直线的斜率等于﹣,设直线的倾斜角等于α,则0≤α<π,且tanα=﹣,故α=,故答案为:.14.(5分)直线y=kx与直线y=2x+1垂直,则k等于﹣.【解答】解:直线y=kx与直线y=2x+1垂直,∴2k=﹣1,解得k=﹣.小明文库页(共16页)故答案为:﹣.15.(5分)已知直线l与直线2x﹣3y+4=0关于直线x=1对称,则直线l的方程为2x+3y﹣8=0.【解答】解:设直线l的方程上的点P(x,y),则P关于直线x=1对称的点P′为(2﹣x,y),P′在直线2x﹣3y+4=0上,∴2(2﹣x)﹣3y+4=0,即2x+3y﹣8=0,故答案为2x+3y﹣8=0.16.(5分)如图,在三棱锥P﹣ABC中,PA=PB=PC=BC,且∠BAC=,则PA与底面ABC所成角为.【解答】解:∵PA=PB=PC,∴P在底面的射影E是△ABC的外心,又故E是BC的中点,所以PA与底面ABC所成角为∠PAE,等边三角形PBC中,PE=,直角三角形ABC中,AE=BC=,又PA=1,∴三角形PAE中,tan∠PAE==∴∠PAE=,则PA与底面ABC所成角为.三、解答题:(共70分,解答应写出必要的文字说明、证明过程或演算步骤).17.(10分)已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x﹣3y+