20172018学年吉林省辽源市田家炳高级中学等五校联考高一上期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

小明文库页(共11页)2017-2018学年吉林省辽源市田家炳高级中学等五校联考高一(上)期末数学试卷一、选择题(共12小题,每题5分,在每小题给出的四个选项中,只有一项符合题目要求)1.(5分)已知集合A={1,2,3},B={x|﹣1<x<3,x∈Z},则A∪B等于()A.{1}B.{1,2}C.{0,1,2,3}D.{1,2,3}2.(5分)函数f(x)=lg(2x﹣1)的定义域为()A.RB.(﹣∞,)C.[,+∞)D.(,+∞)3.(5分)下列各组函数中,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣2,g(x)=C.f(x)=|x|,g(x)=D.f(x)=x,g(x)=()24.(5分)f(x)=,则f{f[f(﹣1)]}等于()A.0B.π2C.πD.95.(5分)若f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)与f(3)的大小关系是()A.f(﹣4)<f(3)B.f(﹣4)>f(3)C.f(﹣4)=f(3)D.不能确定6.(5分)若向量=(2,3),=(4,6),则=()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3)D.(﹣2,3)7.(5分)已知sinα+cosα=﹣,则sin2α=()A.B.C.D.8.(5分)下列区间中,使函数y=sinx为增函数的是()A.[﹣π,0]B.C.[0,π]D.9.(5分)已知向量=(1,2),=(x,﹣4),若,则x的值为()小明文库页(共11页)A.﹣2B.﹣8C.2D.810.(5分)函数y=x﹣2在[,1]上的最大值是()A.B.C.﹣4D.411.(5分)函数f(x)=2x+x﹣2的零点所在的区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)12.(5分)函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2)C.(1,2)D.[0,2]二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)cos300°的值等于.14.(5分)若loga3=m,loga2=n,am+2n=.15.(5分)函数y=ax﹣2+2(a>0且a≠1)一定过定点.16.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算过程)17.(10分)已知全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},求:A∩B,A∪B,(∁UA)∩B,(∁UB)∩A,(∁UA)∩(∁UB).18.(12分)已知向量,的夹角为60°,且||=4,||=2,(1)求•;小明文库页(共11页)(2)求|+|.19.(12分)(1)已知cosb=﹣,且b为第二象限角,求sinb的值.(2)已知tanα=2,计算的值.20.(12分)已知=(1,1),=(1,﹣1),当k为何值时:(1)k+与﹣2垂直?(2)k+与﹣2平行?21.(12分)(1)已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.(2)已知f(x)为二次函数,且f(0)=2,f(x+1)﹣f(x)=x﹣1,求f(x).22.(12分)设向量=(sin2x,cosx+sinx),=(1,cosx﹣sinx),其中x∈R,函数f(x)=•.(1)求f(x)的最小正周期;(2)若f(θ)=1,其中0<θ<,求cos(θ﹣)的值.小明文库页(共11页)2017-2018学年吉林省辽源市田家炳高级中学等五校联考高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每题5分,在每小题给出的四个选项中,只有一项符合题目要求)1.(5分)已知集合A={1,2,3},B={x|﹣1<x<3,x∈Z},则A∪B等于()A.{1}B.{1,2}C.{0,1,2,3}D.{1,2,3}【解答】解:∵B={x|﹣1<x<3,x∈Z}={0,1,2},∴A∪B={0,1,2,3},故选:C2.(5分)函数f(x)=lg(2x﹣1)的定义域为()A.RB.(﹣∞,)C.[,+∞)D.(,+∞)【解答】解:函数f(x)=lg(2x﹣1)有意义,可得2x﹣1>0,解得x>,则定义域为(,+∞).故选D.3.(5分)下列各组函数中,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣2,g(x)=C.f(x)=|x|,g(x)=D.f(x)=x,g(x)=()2【解答】解:A.函数g(x)=x0的定义域为{x|x≠0},所以两个函数的定义域不同,所以A不是相同函数B.g(x)==x﹣2,g(x)的定义域为{x|x≠﹣2},所以两个函数的定义域小明文库页(共11页)不同,所以B不是相同函数.C.由g(x)==|x|,得两个函数的定义域和对应法则,所以C表示的是相同函数.D.g(x)=()2=x,x≥0,两个函数的定义域不相同则,所以D表示的是不是相同函数.故选C.4.(5分)f(x)=,则f{f[f(﹣1)]}等于()A.0B.π2C.πD.9【解答】解:由分段函数的表达式得f(﹣1)=0,f(0)=π,f(π)=π2,故f{f[f(﹣1)]}=π2,故选:B5.(5分)若f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)与f(3)的大小关系是()A.f(﹣4)<f(3)B.f(﹣4)>f(3)C.f(﹣4)=f(3)D.不能确定【解答】解:f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)=f(4),且f(4)<f(3),则f(﹣4)<f(3),故选:A.6.(5分)若向量=(2,3),=(4,6),则=()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3)D.(﹣2,3)【解答】解:根据题意,向量=(2,3),=(4,6),则=﹣=(﹣2,﹣3);小明文库页(共11页)故选:A.7.(5分)已知sinα+cosα=﹣,则sin2α=()A.B.C.D.【解答】解:把sinα+cosα=﹣两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+sin2α=,则sin2α=﹣.故选D8.(5分)下列区间中,使函数y=sinx为增函数的是()A.[﹣π,0]B.C.[0,π]D.【解答】解:函数y=sinx其增函数对应的单调递增区间为:[,],k∈Z.令k=0,可得,故选:B.9.(5分)已知向量=(1,2),=(x,﹣4),若,则x的值为()A.﹣2B.﹣8C.2D.8【解答】解:∵向量=(1,2),=(x,﹣4),且,∴1×(﹣4)﹣2x=0,解得x=﹣2,∴x的值为﹣2.故选:A.10.(5分)函数y=x﹣2在[,1]上的最大值是()小明文库页(共11页)A.B.C.﹣4D.4【解答】解:根据幂函数的性质函数在[,1]递减,故x=时,函数取最大值,最大值是4,故选:D.11.(5分)函数f(x)=2x+x﹣2的零点所在的区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【解答】解:因为函数f(x)=2x+x﹣2为递增函数,f(﹣1)=﹣1﹣2=﹣<0,f(0)=20+0﹣2=﹣1<0,f(1)=2+1﹣2=1>0,f(2)=4>0,f(3)=9>0,所以零点在区间(0,1)上,故选B.12.(5分)函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2)C.(1,2)D.[0,2]【解答】解:令t=2x﹣x2>0,求得0<x<2,可得函数的定义域为{x|0<x<2},且y=logt,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得函数t在定义域内的增区间为(0,1],故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)cos300°的值等于.【解答】解:cos300°=cos(﹣60°)=cos60°=,故答案为:.小明文库页(共11页)14.(5分)若loga3=m,loga2=n,am+2n=12.【解答】解:由loga3=m,loga2=n,得am=3,an=2,则am+2n=am•a2n=3×4=12.故答案为:12.15.(5分)函数y=ax﹣2+2(a>0且a≠1)一定过定点(2,3).【解答】解:由x﹣2=0,得x=2,此时y=3.∴函数y=ax﹣2+2(a>0且a≠1)一定过定点(2,3).故答案为(2,3).16.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.【解答】解:由题意可知A=3,T=2()=4π,ω==,当x=时取得最大值3,所以3=3sin(+φ),sin()=1,,∵,所以φ=,函数f(x)的解析式:f(x)=.故答案为:.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算过程)小明文库页(共11页)17.(10分)已知全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},求:A∩B,A∪B,(∁UA)∩B,(∁UB)∩A,(∁UA)∩(∁UB).【解答】解:∵全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则∁UA={2,4,6,7},∁UB={0,1,3,7}∴A∩B={5,8},A∪B={0,1,2,3,4,5,6,8},(∁UA)∩B={2,4,6},(∁UB)∩A={0,1,3},(∁UA)∩(∁UB)={7}.18.(12分)已知向量,的夹角为60°,且||=4,||=2,(1)求•;(2)求|+|.【解答】解:(1)向量,的夹角为60°,且||=4,||=2,可得•=4×2×cos60°=8×=4;(2)|+|=====2.19.(12分)(1)已知cosb=﹣,且b为第二象限角,求sinb的值.(2)已知tanα=2,计算的值.【解答】解:(1)∵cosb=﹣,且b为第二象限角,∴sinb==.(2)∵已知tanα=2,∴===.20.(12分)已知=(1,1),=(1,﹣1),当k为何值时:小明文库页(共11页)(1)k+与﹣2垂直?(2)k+与﹣2平行?【解答】解:(1)=(1,1),=(1,﹣1),可得k+=(k+1,k﹣1),﹣2=(﹣1,3),由题意可得(k+)•(﹣2)=0,即为﹣(1+k)+3(k﹣1)=0,解得k=2,则k=2,可得k+与﹣2垂直;(2)k+与﹣2平行,可得3(k+1)=﹣(k﹣1),解得k=﹣,则k=﹣,可得k+与﹣2平行.21.(12分)(1)已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.(2)已知f(x)为二次函数,且f(0)=2,f(x+1)﹣f(x)=x﹣1,求f(x).【解答】解:∵f(x)是一次函数,∴设f(x)=ax+b,(a≠0),则f[f(x)]=f[ax+b]=a(ax+b)+b=a2x+ab+b,又∵f[f(x)]=9x+4,∴a2x+ab+b=9x+4,即,解得或,∴f(x)=3x+1或f(x)=﹣3x﹣2;小明文库页(共11页)(2)∵f(x)为二次函数,∴设f(x)=ax2+bx+c,(a≠0),∵f(0)=2,∴c=2.由f(x+1)﹣f(x)=x﹣1,即a(x+1)2+

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功