20172018学年天津市红桥区高一上期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

小明文库页(共9页)2017-2018学年天津市红桥区高一(上)期末数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)设全集U=R,A={x|x>0},B={x|x≤1},则A∩B=()A.{x|0≤x<1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}2.(3分)函数f(x)=lg(x﹣1)的定义域是()A.(2,+∞)B.(1,+∞)C.[1,+∞)D.[2,+∞)3.(3分)函数y=cosωx(x∈R)最小正周期为,则ω=()A.4B.2C.1D.4.(3分)下列函数是奇函数的为()A.y=2xB.y=sinxC.y=log2xD.y=cosx5.(3分)sin15°cos15°=()A.B.C.D.6.(3分)将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A.y=sin(2x﹣)B.y=sin(2x﹣)C.y=sin(x﹣)D.y=sin(x﹣)7.(3分)设a=0.43,b=log0.43,c=30.4,则()A.a<c<bB.b<a<cC.b<c<aD.a<b<c8.(3分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.3二、填空题(每题5分,满分25分,将答案填在答题纸上)9.(5分)cos120°=.10.(5分)在△ABC中,若BC=3,,,则∠B=.小明文库页(共9页)11.(5分)已知函数,则=.12.(5分)已知tanx=3,则sinxcosx=.13.(5分)设ω>0,函数的图象向右平移个单位后与原图象重合,则ω的最小值是.三、解答题(本大题共4小题,共48分.解答应写出文字说明、证明过程或演算步骤.)14.已知,.(1)求的值;(2)求tan2α的值.15.已知函数f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.16.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知bsinA=3csinB,a=3,.(1)求b的值;(2)求的值.17.已知函数.(1)求f(x)的对称轴;(2)求f(x)在区间上的最大值和最小值.小明文库页(共9页)2017-2018学年天津市红桥区高一(上)期末数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)设全集U=R,A={x|x>0},B={x|x≤1},则A∩B=()A.{x|0≤x<1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}【解答】解:∵全集U=R,A={x|x>0},B={x|x≤1},∴A∩B={x|0<x≤1}.故选:B.2.(3分)函数f(x)=lg(x﹣1)的定义域是()A.(2,+∞)B.(1,+∞)C.[1,+∞)D.[2,+∞)【解答】解:要使函数的解析式有意义,自变量x须满足:x﹣1>0即x>1故函数f(x)=lg(x﹣1)的定义域是(1,+∞)故选B3.(3分)函数y=cosωx(x∈R)最小正周期为,则ω=()A.4B.2C.1D.【解答】解:函数y=cosωx(x∈R)最小正周期为,可得,解得ω=4.故选:A.4.(3分)下列函数是奇函数的为()A.y=2xB.y=sinxC.y=log2xD.y=cosx小明文库页(共9页)【解答】解:y=2x为指数函数,没有奇偶性;y=sinx为正弦函数,且为奇函数;y=log2x为对数函数,没有奇偶性;y=cosx为余弦函数,且为偶函数.故选:B.5.(3分)sin15°cos15°=()A.B.C.D.【解答】解:因为sin2α=2sinαcosα,所以sin15°cos15°=sin30°=.故选A.6.(3分)将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A.y=sin(2x﹣)B.y=sin(2x﹣)C.y=sin(x﹣)D.y=sin(x﹣)【解答】解:将函数y=sinx的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x﹣)再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是y=sin(x﹣).故选C.7.(3分)设a=0.43,b=log0.43,c=30.4,则()A.a<c<bB.b<a<cC.b<c<aD.a<b<c【解答】解:∵a∈(0,1),b<0,c>1.∴b<a<c.小明文库页(共9页)故选:B.8.(3分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.3【解答】解:由题意,函数f(x)的定义域为(0,+∞);由函数零点的定义,f(x)在(0,+∞)内的零点即是方程|x﹣2|﹣lnx=0的根.令y1=|x﹣2|,y2=lnx(x>0),在一个坐标系中画出两个函数的图象:由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.故选C.二、填空题(每题5分,满分25分,将答案填在答题纸上)9.(5分)cos120°=.【解答】解:cos120°=﹣cos60°=﹣.故答案为:﹣.10.(5分)在△ABC中,若BC=3,,,则∠B=.【解答】解:由正弦定理可知:=,则sinB===,由BC>AC,则∠A>∠B,由0<∠B<π,则∠B=,故答案为:.小明文库页(共9页)11.(5分)已知函数,则=.【解答】解:∵函数,∴f()==﹣1,=f(﹣1)==.故答案为:.12.(5分)已知tanx=3,则sinxcosx=.【解答】解:∵tanx=3,∴sinxcosx=.故答案为:.13.(5分)设ω>0,函数的图象向右平移个单位后与原图象重合,则ω的最小值是.【解答】解:∵函数的图象向右平移个单位后与原图象重合,∴=n×,n∈z∴ω=n×,n∈z又ω>0,故其最小值是故答案为三、解答题(本大题共4小题,共48分.解答应写出文字说明、证明过程或演算步骤.)14.已知,.小明文库页(共9页)(1)求的值;(2)求tan2α的值.【解答】解:(1)∵,,∴sin=,∴=cosαcos+sinαsin=;(2)∵tanα=,∴tan2α==.15.已知函数f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.【解答】解:函数f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=sin(2x+),(1)∴f(x)的最小正周期T=,(2)f(x)=sin(2x+),由,得:≤x≤,∴f(x)的单调递增区间为:[,],k∈Z.16.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知bsinA=3csinB,a=3,.(1)求b的值;(2)求的值.小明文库页(共9页)【解答】解:(1)在三角形△ABC中,由=,可得asinB=bsinA,又bsinA=3csinB,可得a=3c,又a=3,故c=1,由b2=a2+c2﹣2accosB,,可得b=;(2)由,得sinB=,由cos2B=2cos2B﹣1=﹣,sin2B=2sinBcosB=,∴=sin2Bcos﹣cos2Bsin=,∴的值.17.已知函数.(1)求f(x)的对称轴;(2)求f(x)在区间上的最大值和最小值.【解答】解:(1)函数=4cosx(sinx+cosx)=sin2x+2cos2x﹣1+1=sin2x+cos2x+1=2sin(2x+)+1,令2x+=+kπ,k∈Z,求得f(x)的对称轴为x=+,k∈Z;(2)x∈[﹣,]时,2x+∈[﹣,],令2x+=,解得x=,∴x∈[﹣,]为f(x)的增区间;x∈[,]为f(x)的减区间;小明文库页(共9页)∴当x=时,f(x)取得最大值为3,当2x+=﹣,即x=﹣时,f(x)取得最小值为0.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功