1思想方法集训思想方法训练1函数与方程思想思想方法训练第2页一、能力突破训练1.已知向量a=(1,1),b=(3,m),若a⊥(a-b),则实数m的值是()A.-1B.1C.-2D.2答案:A2.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2B.-1C.0D.1答案:D解析:因为函数f(x)是奇函数,所以f(-x)=-f(x).又因为f(x+2)是偶函数,则f(-x+2)=f(x+2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,所以f(8)=0;同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5),而f(5)=f(3+2)=f(-3+2)=f(-1)=-f(1)=-1,所以f(9)=1,所以f(8)+f(9)=1.故选D.3.已知函数f(x)=x2+ex-(x0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A(-√)B.(-∞,√)C(-√√)D(-√√)答案:B解析:由已知得,与函数f(x)的图象关于y轴对称的图象的函数解析式为h(x)=x2+e-x-(x0).令h(x)=g(x),得ln(x+a)=e-x-,作函数M(x)=e-x-的图象,显然当a≤0时,函数y=ln(x+a)的图象与M(x)的图象一定有交点.当a0时,若函数y=ln(x+a)的图象与M(x)的图象有交点,则lna,则0a√综上a√故选B.24.已知函数y=f(x)的定义域为R,当x0时,f(x)1,且对任意的实数x,y,等式f(x)f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)=--(n∈N*),则a2017的值为()A.2209B.3029C.4033D.2249答案:C解析:根据题意可设函数f(x)=(),则a1=f(0)=1.因为f(an+1)=--(n∈N*),所以()(),所以an+1=an+2.所以数列{an}是以1为首项,2为公差的等差数列.所以an=2n-1,所以a2017=4033.5.设等差数列{an}的公差为d(d≠0),其前n项和为Sn.若,2S12=S2+10,则d的值为.答案:-10解析:由,2S12=S2+10,得{()解得d=-10.6.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为.答案:[1,+∞)解析:以AB为直径的圆的方程为x2+(y-a)2=a,由{-得y2+(1-2a)y+a2-a=0.即(y-a)[y-(a-1)]=0,则由题意得{-解得a≥1.7.已知抛物线C:y2=4x的焦点为F,点P在C上,以点P为圆心,以PF为半径的圆P与y轴交于A,B两点,O为坐标原点.若⃗⃗⃗⃗⃗=7⃗⃗⃗⃗⃗,则圆P的半径r=.答案:5解析:设点P(x0,y0),则圆的方程为--令x=0,则yB=y0+√,ya=y0-√又⃗⃗⃗⃗⃗=7⃗⃗⃗⃗⃗,则y0+√=7(y0-√),又x0=,联立得y0=±4,x0=4,3则r=x0+1=5.8.设函数f(x)=cos2x+sinx+a-1,已知不等式1≤f(x)对一切x∈R恒成立,求a的取值范围.解:f(x)=cos2x+sinx+a-1=1-sin2x+sinx+a-1=-(-)+a+因为-1≤sinx≤1,所以当sinx=时,函数有最大值f(x)max=a+,当sinx=-1时,函数有最小值f(x)min=a-2.因为1≤f(x)对一切x∈R恒成立,所以f(x)max,且f(x)min≥1,即{-解得3≤a≤4,故a的取值范围是[3,4].9.在△ABC中,内角A,B,C所对边的边长分别是a,b,c.已知c=2,C=(1)若△ABC的面积等于√,求a,b的值;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.解:(1)由余弦定理及已知条件,得a2+b2-ab=4.因为△ABC的面积等于√,所以absinC=√,得ab=4.联立{-解得a=2,b=2.(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA,当cosA=0时,A=,B=,a=√,b=√,当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立{-解得a=√,b=√故△ABC的面积S=absinC=√410.某地区要在如图所示的一块不规则用地上规划建成一个矩形商业楼区,余下的作为休闲区,已知AB⊥BC,OA∥BC,且|AB|=|BC|=2|OA|=4,曲线OC是以O为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB,BC上,且一个顶点在曲线OC段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.解:以点O为原点,OA所在的直线为x轴建立平面直角坐标系,则A(-2,0),B(-2,4),C(2,4),设抛物线的方程为x2=2py,把C(2,4)代入抛物线方程得p=,所以曲线段OC的方程为y=x2(x∈[0,2]).设P(x,x2)(x∈[0,2])在OC上,过点P作PQ⊥AB于点Q,PN⊥BC于点N,故|PQ|=2+x,|PN|=4-x2,则矩形商业楼区的面积S=(2+x)(4-x2)(x∈[0,2]).整理,得S=-x3-2x2+4x+8,令S'=-3x2-4x+4=0,得x=或x=-2(舍去),当x[]时,S'0,S是关于x的增函数,当x[]时,S'0,S是关于x的减函数,所以当x=时,S取得最大值,此时|PQ|=2+x=,|PN|=4-x2=,Smax=故该矩形商业楼区规划成长为,宽为时,用地面积最大为二、思维提升训练11.已知数列{an}是等差数列,a1=1,a2+a3+…+a10=144.(1)求数列{an}的通项an;(2)设数列{bn}的通项bn=,记Sn是数列{bn}的前n项和,若n≥3时,有Sn≥m恒成立,求m的最大值.解:(1)∵{an}是等差数列,a1=1,a2+a3+…+a10=144,5∴S10=145,∵S10=,∴a10=28,∴公差d=3.∴an=3n-2(n∈N*).(2)由(1)知bn=-=(--),∴Sn=b1+b2+…+bn=(-),∴Sn=∵Sn+1-Sn=0,∴数列{Sn}是递增数列.当n≥3时,(Sn)min=S3=,依题意,得m,故m的最大值为12.已知椭圆C:=1(ab0)的一个顶点为A(2,0),离心率为√直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为√时,求k的值.解:(1)由题意得{√解得b=√所以椭圆C的方程为=1.(2)由{-得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=-所以|MN|=√--=√-=√6因为点A(2,0)到直线y=k(x-1)的距离d=√,所以△AMN的面积为S=|MN|·d=√由√√,解得k=±1.所以k的值为1或-1.13.直线m:y=kx+1和双曲线x2-y2=1的左支交于A,B两点,直线l过点P(-2,0)和线段AB的中点M,求直线l在y轴上的截距b的取值范围.解:由{-(x≤-1)消去y,得(k2-1)x2+2kx+2=0.①∵直线m与双曲线的左支有两个交点,∴方程①有两个不相等的负实数根.{----解得1k√设M(x0,y0),则{--由P(-2,0),M(--),Q(0,b)三点共线,得出b=-,设f(k)=-2k2+k+2=-2(-),则f(k)在(1,√)上为减函数,∴f(√)f(k)f(1),且f(k)≠0.∴-(2-√)f(k)0或0f(k)1.∴b-√-2或b2.∴b的取值范围是(-∞,-√-2)∪(2,+∞).