溴化锂吸收式制冷机的工作原理是:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。工作原理与循环溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。图1吸收制冷的原理0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差,如图1所示。水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液,如图1所示。显然,这样做是不经济的。图2单效溴化锂吸收式制冷机系统图3双筒溴化锂吸收式制冷机的系统1-冷凝器;2-发生器;3-蒸发器;4-吸收器;5-热交换器;6-U型管;7-防晶管;8-抽气装置;9-蒸发器泵;10-吸收器泵;11-发生器泵;12-三通阀实际上采用对稀溶液加热的方法,使之沸腾,从而获得蒸馏水供不断蒸发使用,如图2所示。系统由发生器、冷凝器、蒸发器、节流阀、泵和溶液热交换器等组成。稀溶液在加热以前用泵将压力升高,使沸腾所产生的蒸气能够在常温下冷凝。例如,冷却水温度为35℃时,考虑到热交换器中所允许的传热温差,冷凝有可能在40℃左右发生,因此发生器内的压力必须是7.37kPa或更高一些(考虑到管道阻力等因素)。发生器和冷凝器(高压侧)与蒸发器和吸收器(低压侧)之间的压差通过安装在相应管道上的膨胀阀或其它节流机构来保持。在溴化锂吸收式制冷机中,这一压差相当小,一般只有6.5~8kPa,因而采用U型管、节流短管或节流小孔即可。离开发生器的浓溶液的温度较高,而离开吸收器的稀溶液的温度却相当低。浓溶液在未被冷却到与吸收器压力相对应的温度前不可能吸收水蒸气,而稀溶液又必须加热到和发生器压力相对应的饱和温度才开始沸腾,因此通过一台溶液热交换器,使浓溶液和稀溶液在各自进入吸收器和发生器之前彼此进行热量交换,使稀溶液温度升高,浓溶液温度下降。由于水蒸气的比容非常大,为避免流动时产生过大的压降,需要很粗的管道,为避免这一点,往往将冷凝器和发生器做在一个容器内,将吸收器和蒸发器做在另一个容器内,如图3所示。也可以将这四个主要设备置于一个壳体内,高压侧和低压侧之间用隔板隔开,如图4所示。图4单筒溴化锂吸收式制冷机的系统1-冷凝器;2-发生器;3-蒸发器;4-吸收器;5-热交换器;6、7、8-泵;9-U型管综上所述,溴化锂吸收式制冷机的工作过程可分为两个部分:(1)发生器中产生的冷剂蒸气在冷凝器中冷凝成冷剂水,经U形管进入蒸发器,在低压下蒸发,产生制冷效应。这些过程与蒸气压缩式制冷循环在冷凝器、节流阀和蒸发器中所产生的过程完全相同;(2)发生器中流出的浓溶液降压后进入吸收器,吸收由蒸发器产生的冷剂蒸气,形成稀溶液,用泵将稀溶液输送至发生器,重新加热,形成浓溶液。这些过程的作用相当于蒸气压缩式制冷循环中压缩机所起的作用。工作过程在图上的表示溴化锂吸收式制冷机的理想工作过程可以用图表示,见图5。理想过程是指工质在流动过程中没有任何阻力损失,各设备与周围空气不发生热量交换,发生终了和吸收终了的溶液均达到平衡状态。图5溴化锂吸收式制冷机工作过程在图上的表示(1)发生过程点2表示吸收器的饱和稀溶液状态,其浓度为,压力为,温度为,经过发生器泵,压力升高到,然后送往溶液热交换器,在等压条件下温度由升高至,浓度不变,再进入发生器,被发生器传热管内的工作蒸气加热,温度由升高到压力下的饱和温度,并开始在等压下沸腾,溶液中的水分不断蒸发,浓度逐渐增大,温度也逐渐升高,发生过程终了时溶液的浓度达到,温度达到,用点4表示。2-7表示稀溶液在溶液热交换器中的升温过程,7-5-4表示稀溶液在发生器中的加热和发生过程,所产生的水蒸气状态用开始发生时的状态(点4')和发生终了时的状态(点3')的平均状态点3'表示,由于产生的是纯水蒸气,故状态位于的纵坐标轴上。(2)冷凝过程由发生器产生的水蒸气(点3')进入冷凝器后,在压力不变的情况下被冷凝器管内流动的冷却水冷却,首先变为饱和蒸气,继而被冷凝成饱和液体(点3),3'-3表示冷剂蒸气在冷凝器中冷却及冷凝的过程。(3)节流过程压力为的饱和冷剂水(点3)经过节流装置(如U形管),压力降为(=)后进入蒸发器。节流前后因冷剂水的焓值和浓度均不发生变化,故节流后的状态点(图中未标出)与点3重合。但由于压力的降低,部分冷剂水气化成冷剂蒸气(点1'),尚未气化的大部分冷剂水温度降低到与蒸发压力相对应的饱和温度(点1),并积存在蒸发器水盘中,因此节流前的点3表示冷凝压力下的饱和水状态,而节流后的点3表示压力为的饱和蒸气(点)和饱和液体(点1)相混合的湿蒸气状态。(4)蒸发过程积存在蒸发器水盘中的冷剂水(点1)通过蒸发器泵均匀地喷淋在蒸发器管簇的外表面,吸收管内冷媒水的热量而蒸发,使冷剂水的等压、等温条件下由点1变为1',1-1'表示冷剂水在蒸发器中的气化过程。(5)吸收过程浓度为、温度为、压力为的溶液,在自身的压力与压差作用下由发生器流至溶液热交换器,将部分热量传给稀溶液,温度降到(点8),4-8表示浓溶液在溶液热交换器中的放热过程。状态点8的浓溶液进入吸收器,与吸收器中的部分稀溶液(点2)混合,形成浓度为、温度为的中间溶液(点9'),然后由吸收器泵均匀喷淋在吸收器管簇的外表面。中间溶液进入吸收器后,由于压力的突然降低,故首先闪发出一部分水蒸气,浓度增大,用点9表示。由于吸收器管簇内流动的冷却水不断地带走吸收过程中放出的吸收热,因此中间溶液便具有不断地吸收来自蒸发器的水蒸气的能力,使溶液的浓度降至,温度由降至(点2)。8-9'和2-9'表示混合过程,9-2表示吸收器中的吸收过程。假定送往发生器的稀溶液的流量为,浓度为,产生的冷剂水蒸气,剩下的流量为、浓度为的浓溶液出发生器。根据发生器中的质量平衡关系得到下式令,则(1)a称为循环倍率。它表示在发生器中每产生1kg水蒸气所需要的溴化锂稀溶液的循环量。()称为放气范围。上面所分析的过程是对理想情况而言的。实际上,由于流动阻力的存在,水蒸气经过挡水板时压力下降,因此在发生器中,发生压力应大于冷凝压力,在加热温度不变的情况下将引起溶液浓度的降低。另外,由于溶液液柱的影响,底部的溶液在较高压力下发生,同时又由于溶液与加热管表面的接触面积和接触时间的有限性,使发生终了浓溶液的浓度低于理想情况下的浓度,(-)称为发生不足;在吸收器中,吸收器压力应小于蒸发压力,在冷却水温度不变的情况下,它将引起稀溶液浓度的增大。由于吸收剂与被吸收的蒸气相互接触的时间很短,接触面积有限,加上系统内空气等不凝性气体存在,均降低溶液的吸收效果,吸收终了的稀溶液浓度比理想情况下的高,(-)称为吸收不足。发生不足和吸收不足均会引起工作过程中参数的变化,使放气范围减少,从而影响循环的经济性。溴化锂吸收式制冷机的热力及传热计算溴化锂吸收式制冷机的计算应包括热力计算、传热计算、结构设计计算及强度校核计算等,此处仅对热力计算和传热计算的方法与步骤加以说明。热力计算溴化锂吸收式制冷机的热力计算是根据用户对制冷量和冷媒水温的要求,以及用户所能提供的加热热源和冷却介质的条件,合理地选择某些设计参数(传热温差、放气范围等),然后对循环加以计算,为传热计算等提供计算和设计依据。(1)已知参数①制冷量它是根据生产工艺或空调要求,同时考虑到冷损、制造条件以及运转的经济性等因素而提出。②冷媒水出口温度它是根据生产工艺或空调要求提出的。由于与蒸发温度有关。若下降,机组的制冷及热力系数均下降,因此在满足生产工艺或空调要求的基础上,应尽可能地提高蒸发温度。对于溴化锂吸收式制冷机,因为用水作制冷剂,故一般大于5℃。③冷却水进口温度根据当地的自然条件决定。应当指出,尽管降低能使冷凝压力下降,吸收效果增强,但考虑到溴化锂结晶这一特殊问题,并不是愈低愈好,而是有一定的合理范围。机组在冬季运行时尤应防止冷却水温度过低这一问题。④加热热源温度考虑到废热的利用、结晶和腐蚀等问题,采用0.1~0.25Mpa的饱和蒸气或75℃以上的热水作为热源较为合理。如能提供更高的蒸气压力,则热效率可获得进一步的提高。(2)设计参数的选定①吸收器出口冷却水温度1和冷凝器的口冷却水温度2由于吸收式制冷机采用热能作为补偿手段,所以冷却水带走的热量远大于蒸气压缩式制冷机。为了节省冷却水的消耗量,往往使冷却水串联地流过吸收器和冷凝器。考虑到吸收器内的吸收效果和冷凝器允许有较高的冷凝压力这些因素,通常让冷却水先经过吸收器,再进入冷凝器。冷却水的总温升一般取7~9℃,视冷却水的进水温度而定。考虑到吸收器的热负荷较冷凝器的热负荷大,通过吸收器的温升1较通过冷凝器的温升2高。冷却水的总温升为。如果水源充足或加温度太低,则可采用冷却水并联流过吸收器和冷凝器的方式,这时冷凝器内冷却水的温升可以高一些。当采取串联方式时,(2)(3)②冷凝温度及冷凝压力冷凝温度一般比冷却水出口温度高2~5℃,即(4)根据查水蒸气表求得,即③蒸发温度及蒸发压力蒸发温度一般比冷媒水出水温度低2~4℃。如果要求较低,则温差取较小值,反之,取较大值,即(5)蒸发压力根据求得,即④吸收器内稀溶液的最低温度吸收器内稀溶液的出口温度一般比冷却水出口温度高3~5℃,取较小值对吸收效果有利,但传热温差的减小将导致所需传热面积的增大,反之亦然。(6)⑤吸收器压力吸收器压力因蒸气流经挡水板时的阻力损失而低于蒸发压力。压降的大小与挡水板的结构和气流速度有关,一般取,即(7)⑥稀溶液浓度根据和,由溴化锂溶液的图确定,即(8)⑦浓溶液浓度为了保证循环的经济性和安全可行性,希望循环的放气范围(-)在0.03~0.06之间,因而(9)⑧发生器内溶液的最高温度发生器出口浓溶液的温度可根据(10)的关系在溴化锂溶液的图中确定。尽管发生出来的冷剂蒸气流经挡水板时有阻力存在,但由于与相比其数值很小,可以忽略不计,因此假定=时影响甚微。一般希望比加热温度低10~40℃,如果超出这一范围,则有关参数应作相应的调整。较高时,温差取较大值。⑨溶液热交换器出口