13.1用树状图或表格求概率第1课时用树状图或表格求概率教学目标1、进一步理解当试验次数较大时试验频率稳定于概率.2、会借助树状图和列表法计算随机事件发生的概率.重点、难点1、借助树状图和列表法计算随机事件发生的概率.2、理解两步及两步以上试验中每步之间的相互独立性,认识试验中所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算随机事件发生的概率.3、通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学步骤与流程一、复习提问问题再现:小明和小凡一起做游戏。在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。(1)这个游戏对双方公平吗?(2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?二、课本做一做(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:抛掷的结果两枚正面朝上两枚反面朝上一枚正面朝上、一枚反面朝上频数频率(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。试验次数100200300400500…两枚正面朝上的次数两枚正面朝上的频率两枚反面朝上的次数两枚反面朝上的频率一枚正面朝上、一枚反面朝上的次数一枚正面朝上、一枚反面朝上的频率(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。由此,你认为这个游戏公平吗?三、课本议一议在上面抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?请将各自的试验数据汇总后,填写下面的表格:抛掷第一枚硬币抛掷第二枚硬币正面朝上的次数正面朝上的次数反面朝上的次数反面朝上的次数正面朝上的次数反面朝上的次数表格中的数据支持你的猜测吗?四、例题讲解内容(展示例题):小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石2头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?目的:通过儿时的游戏,激发学生学习新知的兴趣。使学生意识到是比较事件发生的概率,是评判规则公平与否的依据,而求概率的方法即为课前回顾的——树状图和列表法。实际效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣,能引导学生从问题出发,利用概率解决实际问题。在例题结束后,适时抛出一个类似的情境:小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?目的:本环节的设置,开放性更强,让学生在问题中需求解决方案。加强对列表法和树状图求概率的理解,从中也体会本题因为结果较多,使用列表法更好一些,感受两种求概率方式的优劣。五、当堂检测内容:有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。目的:随堂练习的给出,使学生适应不同的情境,自主选择合适的方式求事件发生的概率,加强树状图和列表法求概率的熟练程度。进一步,感受概率存在的普遍性,消除对新知的恐惧感。六、课堂小结1、本节课你有哪些收获?有何感想?2、用列表法和树状图法求概率时应注意什么情况?七、课后作业3