1课题等腰三角形的性质【学习目标】1.复习全等三角形的判定定理及相关性质;2.理解并掌握等腰三角形的性质及推论,能够用其解决简单的几何问题.【学习重点】等腰三角形性质及推论的理解及应用.【学习难点】等腰三角形三线合一的性质的理解及应用.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目,并在练习中发现规律,从猜测到探索到理解知识.解题思路:范例1中要注意有两边及其中一边的对角对应相等的两个三角形不一定全等.情景导入生成问题旧知回顾:1.我们已经学过三角形全等的哪些判定方法?答:两边及其夹角对应相等的两个三角形全等(SAS)两角及其夹边对应相等的两个三角形全等(ASA)三边对应相等的两个三角形全等(SSS)2.本节课我们将学习如何证明三角形全等的判定定理“角角边”和等腰三角形的性质定理.自学互研生成能力知识模块一全等三角形的判定和性质【自主探究】阅读教材P2的内容,回答下列问题:1.如何用学过的基本事实和定理证明“角角边”定理?2答:已知,如图∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF证明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代换),又BC=EF(已知).∴△ABC≌△DEF(ASA).2.全等三角形的性质是什么?答:根据全等三角形的定义,可以得到:全等三角形对应边相等,对应角相等.范例1:如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是(B)A.BD=CDB.AB=ACC.∠B=∠CD.∠BAD=∠CAD知识模块二等腰三角形的性质阅读教材P2-3的内容,回答下列问题:1.等腰三角形的性质有哪些?如何证明?答:(1)等腰三角形的两底角相等,简称“等边对等角”.(2)等腰三角形顶角的平分线、底边中线及底边上的高互相重合,简称“三线合一”.方法指导:1.等边对等角只限于同一三角形中,若两个三角形有相等的边,则它们所对的角不一定相等.2.“三线合一”是证明角、线段相等或线段垂直的重要定理,即等腰三角形的顶角平分线、底边上的中线、底边上的高三者中只要满足其中一个,就可以得到另外两个.行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:教会学生整理反思.2.已知:如图△ABC中,AB=AC.求证:∠B=∠C.证明:取BC的中点D,连接AD.∵AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD(SSS).∴∠B=∠C(全等三角形对应角相等).3这样就证明了等腰三角形性质:等边对等角.若继续分析会发现:∵△ABD≌△ACD,∴∠BAD=∠CAD,∠ADB=∠ADC=12×180°=90°.∴中线AD也变成顶角∠BAC的角平分线及底边BC上的高.这就得到:等腰三角形顶角平分线、底边上的中线及底边上的高互相重合.范例2:如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=44°.仿例:如图△ABC中,AB=AC,D为AC上任意一点,延长BA到E使得AE=AD,连接DE,求证:DE⊥BC.证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一全等三角形的判定和性质知识模块二等腰三角形的性质检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________