考点过关检测(三十七)1.(2019·烟台二模)已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.(1)求实数a的值;(2)证明:对于任意的正整数n,不等式2+34+49+…+n+1n2>ln(n+1)都成立.解:(1)因为f′(x)=1x+a-2x-1,又x=0为f(x)的极值点.所以f′(0)=1a-1=0,所以a=1.(2)证明:由(1)知f(x)=ln(x+1)-x2-x.因为f′(x)=1x+1-2x-1=-x2x+3x+1(x-1).由f′(x)=0,得x=0.当x变化时,f′(x),f(x)的变化情况如下表.x(-1,0)0(0,+∞)f′(x)+0-f(x)极大值所以f(x)≤f(0)=0,即ln(x+1)≤x2+x(当且仅当x=0时取等号).令x=1n,则ln1n+1<1n2+1n,即lnn+1n<n+1n2,所以ln21+ln32+…+lnn+1n<2+34+…+n+1n2.即2+34+49+…+n+1n2>ln(n+1).2.(2020届高三·武汉调研)已知a∈R,函数f(x)=x-aex+1有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)证明:ex1+ex2>2.解:(1)f′(x)=1-aex,①当a≤0时,f′(x)>0,f(x)在R上单调递增,不合题意,舍去.②当a>0时,令f′(x)>0,解得x<-lna;令f′(x)<0,解得x>-lna.故f(x)在(-∞,-lna)上单调递增,在(-lna,+∞)上单调递减.由函数y=f(x)有两个零点x1,x2(x1<x2),知其必要条件为a>0且f(-lna)=-lna>0,即0<a<1.此时,-1<-lna<2-2lna,且f(-1)=-1-ae+1=-ae<0.令F(a)=f(2-2lna)=2-2lna-e2a+1=3-2lna-e2a(0<a<1),则F′(a)=-2a+e2a2=e2-2aa2>0,所以F(a)在(0,1)上单调递增,所以F(a)<F(1)=3-e2<0,即f(2-2lna)<0.故a的取值范围是(0,1).(2)证明:法一:令f(x)=0⇒a=x+1ex.令g(x)=x+1ex,则g′(x)=-xe-x,g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.由(1)知0<a<1,故有-1<x1<0<x2.令h(x)=g(-x)-g(x)(-1<x<0),则h(x)=(1-x)ex-(1+x)e-x(-1<x<0),h′(x)=-xex+xe-x=x(e-x-ex)<0,所以h(x)在(-1,0)上单调递减,故h(x)>h(0)=0,故当-1<x<0时,g(-x)-g(x)>0,所以g(-x)>g(x),而g(x1)=g(x2)=a,故g(-x1)>g(x2).又g(x)在(0,+∞)上单调递减,-x1>0,x2>0,所以-x1<x2,即x1+x2>0,故ex1+ex2≥2ex1·ex2=2ex1+x22>2.法二:由题意得x1+1=aex1,x2+1=aex2,所以x1+x2+2=a(ex1+ex2)且a=x2-x1ex2-ex1,所以x1+x2+2=x2-x1ex2-ex1(ex1+ex2)=x2-x1ex2-x1+1ex2-x1-1.令x2-x1=t(t>0),则x1+x2+2=tet+1et-1.①令m(t)=(t-2)et+t+2(t>0),则m′(t)=(t-1)et+1,令n(t)=(t-1)et+1(t>0),则n′(t)=tet>0,所以m′(t)在(0,+∞)上单调递增,故m′(t)>m′(0)=0,所以m(t)在(0,+∞)上单调递增,故m(t)>m(0)=0,即tet+1et-1>2,结合①知x1+x2>0,故ex1+ex2≥2ex1·ex2=2ex1+x22>2.3.(2019·汕头模拟)已知f(x)=lnx,g(x)=12ax2+bx(a≠0),h(x)=f(x)-g(x).(1)若a=3,b=2,求h(x)的极值;(2)若函数y=h(x)的两个零点为x1,x2(x1≠x2),记x0=x1+x22,证明:h′(x0)<0.解:(1)∵h(x)=lnx-32x2-2x,x∈(0,+∞),∴h′(x)=1x-3x-2=-3x2-2x+1x=-3x-1x+1x,x∈(0,+∞).令h′(x)=-3x-1x+1x=0,得x=13,当0<x<13时,h′(x)>0,h(x)在0,13上单调递增,当x>13时,h′(x)<0,h(x)在13,+∞上单调递减,∴h(x)极大值=h13=-ln3-56,无极小值.(2)证明:∵函数y=h(x)的两个零点为x1,x2(x1≠x2),不妨设0<x1<x2,则h(x1)=lnx1-12ax21-bx1=0,h(x2)=lnx2-12ax22-bx2=0,∴h(x1)-h(x2)=lnx1-12ax21-bx1-(lnx2-12ax22-bx2)=lnx1-lnx2-12a(x21-x22)-b(x1-x2)=0.即12a(x21-x22)+b(x1-x2)=lnx1-lnx2,又h′(x)=f′(x)-g′(x)=1x-(ax+b),x0=x1+x22,∴h′(x0)=2x1+x2-a·x1+x22+b,∴(x1-x2)h′(x0)=(x1-x2)2x1+x2-a·x1+x22-b=2x1-x2x1+x2-12ax21-x22+bx1-x2=2x1-x2x1+x2-(lnx1-lnx2)=2x1x2-1x1x2+1-lnx1x2.令x1x2=t(0<t<1),r(t)=2t-1t+1-lnt(0<t<1),∴r′(t)=4t+12-1t=-t-12t+12t<0,∴r(t)在(0,1)上单调递减,故r(t)>r(1)=0,∴2x1x2-1x1x2+1-lnx1x2>0,即(x1-x2)h′(x0)>0.又x1-x2<0,∴h′(x0)<0.4.(2020届高三·辽宁五校联考)已知函数f(x)=ax2-xlnx.(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若a=e(e为自然对数的底数),证明:当x>0时,f(x)<xex+1e.解:(1)f′(x)=2ax-lnx-1.因为f(x)在(0,+∞)上单调递增,所以当x>0时,f′(x)≥0恒成立,即2ax-lnx-1≥0恒成立,即2a≥lnx+1x恒成立.设g(x)=lnx+1x,则2a≥g(x)max.g′(x)=-lnxx2,由g′(x)>0,得lnx<0,即0<x<1;由g′(x)<0,得lnx>0,即x>1.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,则g(x)max=g(1)=1.所以2a≥1,即a≥12,故a的取值范围是12,+∞.(2)证明:当a=e时,要证f(x)<xex+1e,即证ex2-xlnx<xex+1e.因为x>0,所以只需证ex-lnx<ex+1ex,即证lnx+1ex>ex-ex.设h(x)=lnx+1ex,则h′(x)=1x-1ex2=ex-1ex2(x>0).由h′(x)<0,得0<x<1e;由h′(x)>0,得x>1e.则h(x)在0,1e上单调递减,在1e,+∞上单调递增.所以h(x)min=h1e=0,从而h(x)≥0,即lnx+1ex≥0.设φ(x)=ex-ex(x>0),则φ′(x)=e-ex(x>0).由φ′(x)>0,得0<x<1;由φ′(x)<0,得x>1,则φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(x)max=φ(1)=0,从而φ(x)≤0,即ex-ex≤0.因为h(x)和φ(x)不同时为0,所以lnx+1ex>ex-ex,故原不等式成立.