考点过关检测(三十八)1.(2019·株洲检测)设函数f(x)=ex-ax+a,其中a为常数,f(x)的图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)设x0=x1x2,证明:f′(x0)<0.解:(1)f′(x)=ex-a.①若a≤0,则f′(x)>0,f(x)在R上单调递增,f(x)的图象与x轴最多有一个交点,与题意矛盾.②若a>0,令f′(x)=0,得x=lna,易得f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,则f(x)min=f(lna)=a(2-lna),又函数f(x)的图象与x轴有两个交点,则a(2-lna)<0,解得ae2,又f(1)=e>0,f(lna)<0,当x→+∞时,f(x)>0,故a∈(e2,+∞)满足题意.综上,a的取值范围为(e2,+∞).(2)证明:由(1)知1<x1<lna<x2,由题意可得ex1-ax1+a=0,ex2-ax2+a=0,解得a=ex2-ex1x2-x1,所以f′(x0)=ex1x2-ex2-ex1x2-x1,要证f′(x0)<0,只需证ex2-ex1x2-x1>ex1x2.下面证明ex2-ex1x2-x1>ex1+x22,即证ex2-x12-ex1-x22x2-x11.(*)令x2-x12=t(t>0),则(*)等价于et-1et>2t,令g(t)=et-1et-2t,则g′(t)=et+1et-2>0,所以g(t)在(0,+∞)上单调递增,所以g(t)>e0-1e0-2×0=0,所以ex2-ex1x2-x1>ex1+x22,而x1+x22>x1x2,所以ex1+x22>ex1x2,故ex2-ex1x2-x1>ex1x2,即f′(x0)<0.2.(202届高三·吕州摸底)已知函数f(x)=ax-ax-4lnx的两个极值点x1,x2满足x1<x2,且e<x2<3,其中e为自然对数的底数.(1)求实数a的取值范围;(2)求f(x2)-f(x1)的取值范围.解:(1)f′(x)=a+ax2-4x=ax2-4x+ax2(x0),由题意知x1,x2为方程ax2-4x+a=0的两个根.易知a≠0.则x1+x2=4a,x1·x2=1,所以a>0且0<x1<1.令S(x)=ax2-4x+a,则由e<x2<3可得S3>0,Se<0,解得65<a<4ee2+1.故实数a的取值范围为65,4ee2+1.(2)f(x2)-f(x1)=ax2-ax2-4lnx2-ax1+ax1+4lnx1,因为x1=1x2,所以f(x2)-f(x1)=ax2-ax2-4lnx2-ax2+ax2+4ln1x2=2ax2-1x2-8lnx2.由(1)知a=4x2x22+1,代入得f(x2)-f(x1)=8x2x22+1·x2-1x2-8lnx2=8x22-1x22+1-8lnx2.令t=x22,则t∈(e2,9),于是可得h(t)=8t-8t+1-4lnt,故h′(t)=16t+12-4t=-4t2-2t+1tt+12=-4t-12tt+12<0,所以h(t)在(e2,9)上单调递减,所以325-8ln3<f(x2)-f(x1)<-161+e2,即f(x2)-f(x1)的取值范围为325-8ln3,-16e2+1.3.(2019·九江模拟)已知函数f(x)=lnx-ax(a∈R).(1)求函数f(x)的单调区间;(2)当a=1时,方程f(x)=m(m<-2)有两个相异实根x1,x2,且x1<x2,证明:x1·x22<2.解:(1)由题意得,f′(x)=1x-a=1-axx(x>0).当a≤0时,由x>0,得1-ax>0,即f′(x)>0.所以f(x)在(0,+∞)上单调递增.当a>0时,由f′(x)>0,得0<x<1a,由f′(x)<0,得x>1a,所以f(x)在0,1a上单调递增,在1a,+∞上单调递减.综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在0,1a上单调递增,在1a,+∞上单调递减.(2)证明:由题意及(1)可知,方程f(x)=m(m<-2)的两个相异实根x1,x2满足lnx-x-m=0,且0<x1<1<x2,即lnx1-x1-m=lnx2-x2-m=0.由题意,可知lnx1-x1=m<-2<ln2-2,又由(1)可知,f(x)=lnx-x在(1,+∞)上单调递减,故x2>2.令g(x)=lnx-x-m,则g(x)-g2x2=-x+2x2+3lnx-ln2.令h(t)=-t+2t2+3lnt-ln2(t>2),则h′(t)=-t-22t+1t3.当t>2时,h′(t)<0,h(t)是减函数,所以h(t)<h(2)=2ln2-32<0,所以g(x)<g2x2.因为x2>2且g(x1)=g(x2),所以h(x2)=g(x2)-g2x22=g(x1)-g2x22<0,即g(x1)<g2x22.因为g(x)在区间(0,1)上单调递增,所以x1<2x22,故x1·x22<2.4.(2019·厦门一模)已知函数f(x)=23x3-32x2+logax(a>0且a≠1)为定义域上的增函数,f′(x)是f(x)的导函数,且f′(x)的最小值小于等于0.(1)求a的值;(2)设函数g(x)=f(x)-23x3-4lnx+6x,且g(x1)+g(x2)=0,求证:x1+x2≥2+6.解:(1)f′(x)=2x2-3x+1xlna(x0),由f(x)为增函数可得,f′(x)≥0在(0,+∞)上恒成立.则由2x2-3x+1xlna≥0可得2x3-3x2≥-1lna,令m(x)=2x3-3x2,则m′(x)=6x2-6x,由m′(x)>0,得x>1,由m′(x)<0,得0<x<1,所以m(x)在(0,1)上单调递减,在(1,+∞)上单调递增,在x=1处取得极小值即最小值,所以m(x)min=m(1)=-1,所以-1≥-1lna,即1≤1lna,当a>1时,易得a≤e,所以1<a≤e;当0<a<1时,则1lna<0,这与1≤1lna矛盾,从而不能使f′(x)≥0恒成立.所以1<a≤e.由f′(x)min≤0,可得2x2-3x+1xlna≤0,即2x3-3x2≤-1lna,由之前的讨论可知,-1≤-1lna,即1≥1lna.当0<a<1时,1≥1lna恒成立;当a>1时,1≥1lna⇒lna≥1⇒a≥e.所以0<a<1或a≥e.综上,a=e.(2)证明:g(x)=23x3-32x2+lnx-23x3-4lnx+6x=-32x2-3lnx+6x,因为g(x1)+g(x2)=0,所以-32x21-3lnx1+6x1+-32x22-3lnx2+6x2=0,所以-32(x21+x22)-3ln(x1x2)+6(x1+x2)=0,即-12[(x1+x2)2-2x1x2]-ln(x1x2)+2(x1+x2)=0,即-12(x1+x2)2+x1x2-ln(x1x2)+2(x1+x2)=0,所以-12(x1+x2)2+2(x1+x2)=ln(x1x2)-x1x2.令x1x2=t,g(t)=lnt-t,则g′(t)=1t-1=1-tt,易得g(t)在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(t)≤g(1)=-1,所以-12(x1+x2)2+2(x1+x2)≤-1,整理得(x1+x2)2-4(x1+x2)-2≥0,解得x1+x2≥2+6或x1+x2≤2-6(舍去),所以x1+x2≥2+6得证.