考点过关检测(九)1.(2019·济宁模拟)已知数列{an}满足an+1=an-an-1(n≥2),a1=m,a2=n,Sn为数列{an}的前n项和,则S2019的值为()A.2019n-mB.n-2019mC.2mD.2n解析:选D∵an+1=an-an-1(n≥2),a1=m,a2=n,∴a3=n-m,a4=-m,a5=-n,a6=m-n,a7=m,a8=n,…,∴an+6=an,且a1+a2+a3+a4+a5+a6=0,则S2019=S336×6+3=336×(a1+a2+…+a6)+a1+a2+a3=336×0+m+n+n-m=2n.2.(2019·安徽马鞍山一模)已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=()A.0B.-100C.100D.10200解析:选Bf(n)=n2cos(nπ)=-n2,n为奇数,n2,n为偶数=(-1)n·n2.由an=f(n)+f(n+1)=(-1)n·n2+(-1)n+1·(n+1)2=(-1)n[n2-(n+1)2]=(-1)n+1·(2n+1),得a1+a2+a3+…+a100=3+(-5)+7+(-9)+…+199+(-201)=-2×50=-100.故选B.3.(2019·泉州模拟)若数列{an}是正项数列,且a1+a2+…+an=n2+n,则a1+a22+…+ann等于()A.2n2+2nB.n2+2nC.2n2+nD.2(n2+2n)解析:选A∵a1+a2+…+an=n2+n,∴n=1时,a1=2,解得a1=4.n≥2时,a1+a2+…+an-1=(n-1)2+n-1,相减可得an=2n,∴an=4n2,n=1时也成立,∴ann=4n.则a1+a22+…+ann=4(1+2+…+n)=4×n1+n2=2n2+2n.4.(2019·广州模拟)已知递增数列{an}对任意n∈N*均满足an∈N*,aan=3n,记bn=a2·3n-1(n∈N*),则数列{bn}的前n项和等于()A.2n+nB.2n+1-1C.3n+1-3n2D.3n+1-32解析:选Daa1=3⇒a1≤3,讨论:若a1=1⇒aa1=a1=1,不合题意;若a1=2⇒a2=3;若a1=3⇒aa1=a3=3,不合题意,即a1=2,a2=3,aa2=6⇒a3=6,所以aa3=9⇒a6=9,所以a9=aa6=18,a18=aa9=27,a27=aa18=54,a54=aa27=81,则bn=3n,所以数列{bn}的前n项和等于3-3n+11-3=3n+1-32.5.(2019·河南郑州质检)已知数列{an}满足a1a2a3…an=2n2(n∈N*),且对任意n∈N*都有1a1+1a2+…+1ant,则t的取值范围为()A.13,+∞B.13,+∞C.23,+∞D.23,+∞解析:选D∵数列{an}满足a1a2a3…an=2n2(n∈N*),∴n=1时,a1=2;n≥2时,a1a2a3…an-1=2(n-1)2,可得an=22n-1.又a1=2也符合上式,∴数列{an}的通项公式为an=22n-1.∴1an=122n-1,数列1an为等比数列,首项为12,公比为14.∴1a1+1a2+…+1an=121-14n1-14=231-14n23.∵对任意n∈N*都有1a1+1a2+…+1ant,∴t的取值范围为23,+∞.故选D.6.已知等差数列{an}满足a3=-1,a4+a12=-12,则数列{an}的通项公式an=________;若数列an2n-1的前n项和为Sn,则使Sn14的最大正整数n为________.解析:设等差数列{an}的公差为d,由已知可得a1+2d=-1,2a1+14d=-12,解得a1=1,d=-1,故数列{an}的通项公式为an=2-n.Sn=a1+a22+…+an2n-1,①Sn2=a12+a222+…+an2n.②①-②得Sn2=a1+a2-a12+…+an-an-12n-1-an2n=1-12+122+…+12n-1-2-n2n=1-1-12n-1-2-n2n=n2n,所以Sn=n2n-1,由Sn=n2n-114,得0n≤5,故最大正整数n为5.答案:2-n57.(2019·贺州联考)已知等差数列{an}的公差d=2,且a1,a3-1,a5+7成等比数列.(1)求数列{an}的通项公式;(2)设bn=(-1)n+1an,求数列{bn}的前2n项和T2n.解:(1)∵d=2,a1,a3-1,a5+7成等比数列,∴a1(a5+7)=(a3-1)2,即a1(a1+15)=(a1+3)2,解得a1=1,∴an=a1+(n-1)d=2n-1.(2)∵bn=(-1)n+1an=(-1)n+1(2n-1),∴T2n=b1+b2+…+b2n-1+b2n=1-3+5-7+…+(4n-3)-(4n-1)=-2n.8.(2019·南昌重点中学高三段考)已知数列{an}是等差数列,{bn}是等比数列,a1=1,b1=2,a2+b2=7,a3+b3=13.(1)求{an}和{bn}的通项公式;(2)若cn=an,n为奇数,bn,n为偶数,求数列{cn}的前2n项和S2n.解:(1)设数列{an}的公差为d,数列{bn}的公比为q(q≠0),依题意有1+d+2q=7,1+2d+2q2=13,解得d=2,q=2.故an=2n-1,bn=2n.(2)由已知c2n-1=a2n-1=4n-3,c2n=b2n=4n,所以数列{cn}的前2n项和S2n=(a1+a3+…+a2n-1)+(b2+b4+…+b2n)=n1+4n-32+41-4n1-4=2n2-n+43(4n-1).9.已知等差数列{an}的前n项和为Sn,S7=0,a3-2a2=12(n∈N*).(1)求数列{an}的通项公式an;(2)求数列an+162n+2的前n项和Sn.解:(1)设等差数列{an}的公差为d,由已知得7a1+7×62d=0,a1+2d-2a1+d=12,解得a1=-12,d=4,所以an=4n-16.(2)由(1)知an=4n-16,所以an+162n+2=4n-16+162n+2=n2n,所以Sn=12+222+323+…+n2n,两边同乘以12,得12Sn=122+223+324+…+n-12n+n2n+1,两式相减,得12Sn=12+122+123+124+…+12n-n2n+1=121-12n1-12-n2n+1=1-n+22n+1,所以Sn=2-n+22n.10.(2019·青岛二模)已知数列{an}中,a2=2a1=2,an+1+2an-1=3an(n≥2,n∈N*).设数列{bn}满足bn=an+1-an.(1)证明:数列{bn}是等比数列;(2)设cn=2-n·bn4n2-1,求数列{cn}的前n项和Sn.解:(1)证明:因为an+1+2an-1=3an(n≥2,n∈N*),bn=an+1-an,所以bn+1bn=an+2-an+1an+1-an=3an+1-2an-an+1an+1-an=2an+1-anan+1-an=2,因为b1=a2-a1=2-1=1,所以数列{bn}是以1为首项,2为公比的等比数列.(2)由(1)知bn=1×2n-1=2n-1.因为cn=bn4n2-12n,所以cn=122n+12n-1=1412n-1-12n+1,所以Sn=c1+c2+…+cn=141-13+13-15+…+12n-1-12n+1=141-12n+1=n4n+2.