专题02函数与导数理2018年高考题和高考模拟题数学理分项版汇编解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.函数与导数1.【2018年浙江卷】函数y=sin2x的图象可能是A.B.C.D.【答案】D点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A.B.C.D.【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)【答案】C详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A.B.C.D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.5.【2018年全国卷Ⅲ理】设,,则A.B.C.D.【答案】B【解析】分析:求出,得到的范围,进而可得结果。详解:.,,,,即,又,即,故选B.点睛:本题主要考查对数的运算和不等式,属于中档题。6.【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则A.B.0C.2D.50【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.7.【2018年理数全国卷II】函数的图像大致为A.AB.BC.CD.D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.8.【2018年浙江卷】已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1,4)当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为.点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.【2018年浙江卷】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则当时,___________,___________.【答案】811【解析】分析:将z代入解方程组可得x,y值.详解:点睛:实际问题数学化,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.10.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.11.【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12.【2018年江苏卷】函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.13.【2018年江苏卷】函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.14.【2018年理新课标I卷】已知函数,则的最小值是_____________.【答案】详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.15.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。16.【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。详解:,则,所以,故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。17.【2018年理数全国卷II】曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.18.【2018年浙江卷】已知函数f(x)=−lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意k0,直线y=kx+a与曲线y=f(x)有唯一公共点.【答案】(Ⅰ)见解析(Ⅱ)见解析详解:(Ⅰ)函数f(x)的导函数,由得,因为,所以.由基本不等式得.因为,所以.由题意得.设,则,所以x(0,16)16(16,+∞)-0+2-4ln2所以g(x)在[256,+∞)上单调递增,故,即.(Ⅱ)令m=,n=,则f(m)–km–a|a|+k–k–a≥0,f(n)–kn–a≤0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得.设h(x)=,则h′(x)=,其中g(x)=.由(Ⅰ)可知g(x)≥g(16),又a≤3–4ln2,故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.综上,当a≤3–4ln2时,对于任意k0,直线y=kx+a与曲线y=f(x)有唯一公共点.点睛:利用导数证明不等式常见类型及解题策略:(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2018年理数天津卷】已知函数,,其中a1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x00,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a1,可知当x变化时,,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得.③因此,只需证明当时,关于x1的方程③存在实数解.故存在唯一的x0,且x00,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.20.【2018年理北京卷】设函数=[].(Ⅰ)若曲线y=f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1)a的值为1(2)a的取值范围是(,+∞)(Ⅱ)由(Ⅰ)得f′(x)=[ax2–(2a+1)x

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功