拿下压轴题·高考创奇迹“2+1+2”压轴题目自选练二供学有余力的考生自选一、选择、填空压轴题11.已知数列{an}满足2an+1+an=3(n≥1),且a3=134,其前n项和为Sn,则满足不等式|Sn-n-6|<1123的最小整数n是()A.8B.9C.10D.11解析:选C由2an+1+an=3,得2(an+1-1)+(an-1)=0,即an+1-1an-1=-12,又a3=134,所以a3-1=94,代入上式,有a2-1=-92,a1-1=9,所以数列{an-1}是首项为9,公比为-12的等比数列.所以|Sn-n-6|=|(a1-1)+(a2-1)+…+(an-1)-6|=9×1--12n1--12-6=-6×-12n<1123,又n∈N*,所以n的最小值为10.故选C.12.已知三棱锥PABC的所有顶点都在球O的球面上,PC是球O的直径.若平面PCA⊥平面PCB,PA=AC,PB=BC,三棱锥PABC的体积为a,则球O的体积为()A.2πaB.4πaC.23πaD.43πa解析:选B设球O的半径为R,因为PC为球O的直径,PA=AC,PB=BC,所以△PAC,△PBC均为等腰直角三角形,点O为PC的中点,连接AO,OB,所以AO⊥PC,BO⊥PC,因为平面PCA⊥平面PCB,平面PCA∩平面PCB=PC,所以AO⊥平面PCB,所以V三棱锥PABC=13·S△PBC·AO=13×12×PC×BO×AO=13×12×2R×R×R=13R3=a,所以球O的体积V=43πR3=4πa.故选B.16.已知抛物线y2=2px(p>0)与双曲线x2a2-y2=138≤a<12在第四象限的交点为G(x0,y0),点G到抛物线的准线的距离d=p12+a,则当p取得最小值时,抛物线的焦点F到双曲线的渐近线的距离为________.解析:联立y2=2px,x2a2-y2=1,可得x2a2-2px=1,即x2-2a2px-a2=0,解得x=a2p+aa2p2+1或x=a2p-aa2p2+1<0(舍去),故x0=a2p+aa2p2+1,抛物线的准线方程为x=-p2,则点G到抛物线的准线的距离d=a2p+aa2p2+1+p2=p12+a,即ap+a2p2+1=p,可得-2ap2+p2=1,故p2=11-2a,又38≤a<12,所以当a=38时,p2=11-2a=11-2×38=4,即p取得最小值2,此时抛物线的焦点为F(1,0),双曲线的渐近线方程为y=±83x,即8x±3y=0,所以抛物线的焦点F到双曲线的渐近线的距离为882+32=87373.答案:87373二、解答题压轴题20.已知椭圆Γ:x2a2+y2b2=1(a>b>0)经过点M(-2,1),且右焦点F(3,0).(1)求椭圆Γ的标准方程;(2)过N(1,0)且斜率存在的直线AB交椭圆Γ于A,B两点,记t=MA→·MB→,若t的最大值和最小值分别为t1,t2,求t1+t2的值.解:(1)由椭圆x2a2+y2b2=1的右焦点为(3,0),知a2-b2=3,即b2=a2-3,则x2a2+y2a2-3=1,a2>3.又椭圆过点M(-2,1),∴4a2+1a2-3=1,又a2>3,∴a2=6.∴椭圆Γ的标准方程为x26+y23=1.(2)设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2).由x26+y23=1,y=kx-1得x2+2k2(x-1)2=6,即(1+2k2)x2-4k2x+2k2-6=0,∵点N(1,0)在椭圆内部,∴Δ>0,∴x1+x2=4k21+2k2,①x1x2=2k2-62k2+1,②则t=MA→·MB→=(x1+2)(x2+2)+(y1-1)(y2-1)=x1x2+2(x1+x2)+4+(kx1-k-1)(kx2-k-1)=(1+k2)x1x2+(2-k2-k)(x1+x2)+k2+2k+5.③将①②代入③得,t=(1+k2)·2k2-62k2+1+(2-k2-k)·4k22k2+1+k2+2k+5,∴t=15k2+2k-12k2+1,∴(15-2t)k2+2k-1-t=0,k∈R,则Δ=22+4(15-2t)(1+t)≥0,∴(2t-15)(t+1)-1≤0,即2t2-13t-16≤0,由题意知t1,t2是2t2-13t-16=0的两根,∴t1+t2=132.21.已知函数f(x)=x2-(2a-1)x-alnx(a∈R).(1)试讨论函数f(x)的单调性;(2)若函数f(x)存在最小值f(x)min,求证:f(x)min34.解:(1)f′(x)=2x+1x-ax,x∈(0,+∞).当a≤0时,f′(x)0在(0,+∞)上恒成立,故f(x)在(0,+∞)上单调递增;当a0时,由f′(x)0,解得xa,由f′(x)0,解得0xa.故f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.综上,当a≤0时,f(x)在(0,+∞)上单调递增,当a0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)证明:由(1)知要使f(x)存在最小值,则a0且f(x)min=f(a)=a-a2-alna.令g(x)=x-x2-xlnx(x0),则g′(x)=-2x-lnx在(0,+∞)上单调递减.又g′1e=1-2e0,g′12=0,故存在x0∈1e,12,使得g′(x0)=0.故g(x)在(0,x0)上单调递增,在(x0,+∞)上单调递减.∵g′(x0)=0,∴-2x0-lnx0=0,故lnx0=-2x0.∴g(x)max=g(x0)=x0+x20=x0+122-14.又∵x0∈1e,12,∴g(x)max=x0+122-1412+122-14=34,故f(x)min34.